# Modicon Quantum 800 Series I/O Modules with Unity Reference Manual 

September 2004

## Document Set

Presentation This package contains the following Quantum with Unity Pro manuals:

- Quantum Hardware Reference Manual
- Quantum Discrete and Analog I/O Reference Manual
- Quantum Experts and Communication Reference Manual
- Grounding and Electromagnetic Compatibility of PLC Systems User Manual
- Quantum 800 Series I/O Reference Manual


## Table of Contents

Safety Information ..... 17
About the Book ..... 19
Part I Overview of Modicon Quantum 800 Series I/O Modules with Unity ..... 21
Introduction ..... 21
Chapter 1 Modicon Quantum 800 Series I/O Modules with Unity - Overview and Configuration ..... 23
Configuring Modicon Quantum 800 Series I/O Modules with Unity ..... 24
Technical Features Overview-Modicon Quantum 800 Series I/O Modules with Unity ..... 26
Chapter 2 Modicon Quantum 800 Series I/O Modules with Unity Addressing Modes ..... 31
Flat Addressing-Modicon Quantum 800 Series I/O Modules ..... 32
Topological Addressing-Modicon Quantum 800 Series I/O Modules with Unity ..... 33
Addressing Example-Modicon Quantum 800 Series I/O Modules with Unity ..... 34
Chapter 3 Modicon Quantum $\mathbf{8 0 0}$ Series I/O Modules with Unity ..... 35
Main Features-Modicon Quantum 800 Series I/O Modules with Unity ..... 36
Indicators-Modicon Quantum 800 Series I/O Modules with Unity. ..... 37
I/O Map-Modicon Quantum 800 Series I/O Modules with Unity ..... 38
Grounding Guidelines-Modicon Quantum 800 Series I/O Modules with Unity ..... 39
Installation Guidelines-Modicon Quantum 800 Series I/O Modules with Unity ..... 40
Requirements-Modicon Quantum 800 Series I/O Modules with Unity ..... 44
CE Installation-Modicon Quantum 800 Series I/O Modules with Unity ..... 45
Installation Parts List-Modicon Quantum 800 Series I/O Modules with Unity ..... 46
Key Pin Assignments-Modicon Quantum 800 Series I/O Modules ..... 47
Quick Start Test-Modicon Quantum 800 Series I/O Modules with Unity ..... 50
Analog Module Specifications-Modicon Quantum 800 Series I/O Modules with Unity ..... 51
Discrete Module Specifications-Modicon Quantum 800 Series I/O Modules with Unity ..... 52
Part || 800 Series RIO Modules ..... 53
Introduction ..... 53
Chapter 4 J890 \& J892 RIO Interface Modules ..... 55
J890 \& J892 Overview ..... 56
J890 \& J892 DIP Switch Settings for the Drop Address ..... 57
J892 DIP Switch Settings for ASCII Devices ..... 60
J890 \& J892 Indications ..... 63
J890 \& J892 Installation and Connection ..... 66
J890 \& J892 Connectivity on an S908 RIO Network ..... 69
J890 \& J892 RIO Interface Error Codes ..... 71
J892 ASCII Error Codes ..... 72
J890 \& J892 Specifications ..... 73
Chapter 5 P890 \& P892 RIO Processors ..... 75
P890 \& P892 Overview ..... 76
P890 \& P892 Indicators ..... 78
P890 \& P892 Power Available ..... 79
P890 \& P892 Switch Settings for the Drop Address ..... 80
P890 \& P892 Installation ..... 83
P890 \& P892 Specifications ..... 84
Chapter 6 ASP890300 RIO Processor ..... 87
ASP890300 General Description ..... 88
Indicators ..... 91
Power, Backplanes, I/O and Typical Configuration ..... 92
Switch Settings ..... 95
Diagnostics ..... 99
Installation ..... 102
Specifications ..... 104
Part III 800 Series Analog I/O Modules ..... 109
Introduction ..... 109
Chapter 7 B846-001 \& B846-002 Input Multiplexers ..... 111
B846-001 \& B846-002 Overview ..... 112
B846-001 \& B846-002 Field Connections ..... 114
B846-001 \& B846-002 Specifications ..... 115
B846-001 Parameter Configuration ..... 116
Chapter 8 B872-100 Analog Output ..... 117
B872-100, Analog Output ..... 118
B872-100 Data Value to Output Conversion ..... 119
B872-100 Field Connections ..... 122
B872-100 - Setting Module DIP-Switch. ..... 124
Calibration ..... 126
B872-100 Specifications ..... 131
B872-100 Parameter Configuration. ..... 133
Chapter 9 B872-200 Analog Output ..... 135
B872-200 Overview ..... 136
B872-200 Data Value to Output Conversion ..... 138
B872-200 Field Connections ..... 142
B872-200 - Setting Module Jumpers ..... 144
B872-200 - Setting Module DIP-Switch. ..... 145
B872-200 Calibration. ..... 147
B872-200 Specifications ..... 151
B872-200 Parameter Configuration ..... 152
Chapter 10 B873-002 \& B875-002 Analog Input ..... 153
B873-002 \& B875-002 Overview ..... 154
B873-002 \& B875-002 Switch Settings and Indicators ..... 155
B873-002 \& B875-002 Installation. ..... 156
B873-002 \& B875-002 Calibration. ..... 159
B873-002 \& B875-002 Throughput Rate. ..... 163
B873-002 \& B875-002 Field Connections ..... 164
B873-002 \& B875-002 Specifications ..... 166
B873-002 Parameter Configuration. ..... 167
B875-002 Parameter Configuration. ..... 168
Chapter 11 B873-012 \& B875-012 Analog Input. ..... 169
B873-012 \& B875-012 Overview ..... 170
B873-012 \& B875-012 Switch Settings and Indicators ..... 171
B873-012 \& B875-012 Installation ..... 172
B873-012 \& B875-012 Calibration ..... 175
B873-012 \& B875-012 Throughput Rate ..... 177
B873-012 \& B875-012 Field Connections ..... 178
B873-012 \& B875-012 Specifications ..... 180
B873-012 Parameter Configuration ..... 181
B875-012 Parameter Configuration ..... 182
Chapter 12 B875-102 High Speed Analog Input ..... 183
B875-102 High Speed Analog Input, Inputs ..... 184
B875-102 High Speed Analog Input, Performance Considerations ..... 187
B875-102 High Speed Analog Input, Communications with the PLC ..... 191
B875-102 High Speed Analog Input, Typical Circuit and Ground Connections ..... 193
B875-102 High Speed Analog Input, Switch Settings ..... 194
B875-102 High Speed Analog Input, Indicators ..... 203
B875-102 High Speed Analog Input, Recalibration ..... 204
B875-102 High Speed Analog Input, Installation ..... 207
B875-102 High Speed Analog Input, Specifications ..... 210
B875-102 Parameter Configuration ..... 212
Chapter 13 B875-111 \& B877-111 Analog Input ..... 213
B875-111 Analog Input, Overview ..... 214
B875-111 Analog Input, Module Configuration ..... 216
B875-111 Analog Input, Field Connections. ..... 220
B875-111 Analog Input, Application Example ..... 227
B875-111 Analog Input, Calibration ..... 233
B875-111 Analog Input, Quick Reference. ..... 236
B875-111 Analog Input, Specifications ..... 237
B875-111 Parameter Configuration ..... 239
B877-111 Parameter Configuration ..... 240
B877-111,Terminal Numbering and Output Connections ..... 241
Chapter 14 B875-200 Configurable A/D Input ..... 243
B875-200 Configurable A/D Input, Overview ..... 244
B875-200 Configurable A/D Input, Input Pack Insertion ..... 246
B875-200 Configurable A/D Input, Module Configuration ..... 247
B875-200 Configurable A/D Input, Field Connections ..... 250
B875-200 Configurable A/D Input, Calibration ..... 258
B875-200 Configurable A/D Input, Available Input Packs ..... 261
B875-200 Configurable A/D Input, Input Pack Simplified Schematics ..... 265
B875-200 Configurable A/D Input, Specifications ..... 271
B875-200 Parameter Configuration ..... 273
Part IV 800 Series Discrete I/O Modules ..... 275
Introduction ..... 275
Chapter 15 B802-008 115 Vac Output ..... 279
B802-008 115 Vac Output, Overview ..... 280
B802-008 115 Vac Output, Field Connections ..... 281
B802-008 48 Vac Output, Specifications ..... 282
B802-008 Parameter Configuration ..... 283
Chapter 16 B803-008 115 Vac Input ..... 285
B803-008 115 Vac Input, Overview ..... 286
B803-008 115 Vac Input, Field Connections ..... 287
B803-008 115 Vac Input, Specifications ..... 288
B803-008 Parameter Configuration ..... 289
Chapter 17 B804-116 115 Vac Output ..... 291
B804-116 115 Vac Output, Overview ..... 292
B804-116 115 Vac Output, Field Connections ..... 293
B804-116 48 Vac Output, Specifications ..... 294
B804-116 Parameter Configuration ..... 295
Chapter 18 B804-148 48 Vac Output ..... 297
B804-148 48 Vac Output, Overview ..... 298
B804-148 48 Vac Output, Field Connections ..... 299
B804-148 48 Vac Output, Specifications ..... 300
B804-148 Parameter Configuration ..... 301
Chapter 19 B805-016 115 Vac Input ..... 303
B805-016 115 Vac Input, Overview ..... 304
B805-016 115 Vac Input, Field Connections ..... 305
B805-016 115 Vac Input, Specifications. ..... 306
B805-016 Parameter Configuration ..... 307
Chapter 20 B806-032 115 Vac Output ..... 309
B806-032 115 Vac Output, Overview ..... 310
B806-032 115 Vac Output, Field Connections ..... 312
B806-032 115 Vac Output, Fusing Guidelines ..... 313
B806-032 115 Vac Output, Specifications ..... 314
B806-032 Parameter Configuration ..... 315
Chapter 21 B806-124 24 Vac Output ..... 317
B806-124 24 Vac Output, Overview ..... 318
B806-124 24 Vac Output, Field Connections ..... 320
B806-124 24 Vac Output, Specifications ..... 321
B806-124 Parameter Configuration ..... 322
Chapter 22 B807-132 115 Vac Input ..... 323
B807-132 115 Vac Input, Overview ..... 324
B807-132 115 Vac Input, Field Connections ..... 326
B807-132 115 Vac Input, Specifications. ..... 329
B807-132 Parameter Configuration ..... 330
Chapter 23 B808-016 230 Vac Output ..... 331
B808-016 230 Vac Output, Overview ..... 332
B808-016 230 Vac Output, Field Connections ..... 333
B808-016 230 Vac Output, Specifications ..... 334
B808-016 Parameter Configuration ..... 335
Chapter 24 B809-016 230 Vac Input ..... 337
B809-016 230 Vac Input, Overview ..... 338
B809-016 230 Vac Input, Field Connections ..... 339
B809-016 230 Vac Input, Specifications. ..... 340
B809-016 Parameter Configuration ..... 341
Chapter 25 B810-008 115 Vac Isolated Output. ..... 343
B810-008 115 Vac Output, Overview ..... 344
B810-008 115 Vac Output, Field Connections ..... 345
B810-008 115 Vac Isolated Output, Specifications ..... 346
B810-008 Parameter Configuration ..... 347
Chapter 26 B814-108 Relay Output ..... 349
B814-108 Relay Output, Overview ..... 350
B814-108 Relay Output, Configuration ..... 351
B814-108 Relay Output, Field Connections ..... 352
814-108 Relay Output, Specifications. ..... 353
B814-108 Parameter Configuration ..... 354
Chapter 27 B816 Isolated Output ..... 355
B816 Parameter Configuration ..... 355
Chapter 28 B817-116 and B817-216 115/230 Vac Isolated Input ..... 357
B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Overview ..... 358
B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Field Connections ..... 359
B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Specifications. ..... 362
B817-116 and B817-216 Parameter Configuration ..... 363
Chapter 29 B818 24 Vac Output ..... 365
B818-Setting Module DIP Switch ..... 366
B818 24Vdc Output, Field Connections ..... 367
B818 24 Vdc (True High) Output, Specifications ..... 368
B818 Parameter Configuration ..... 369
Chapter 30 B819-232 230 Vac Input ..... 371
B819-232, 230 Vac Input, Keying and Wiring ..... 372
B819-232, 32 Point Input, Specifications ..... 374
B819-232 Parameter Configuration ..... 375
Chapter 31 B820-008 10-60 Vdc Output ..... 377
B820-008 10-60 Vdc Output, Overview ..... 378
B820-008 10-60 Vdc Output, Field Connections ..... 379
B820-008 10-60 Vdc Output, Specifications ..... 380
B820-008 Parameter Configuration ..... 381
Chapter 32 B821-108 10-60 Vdc Input (True High) ..... 383
B821-108 10-60 Vdc Input (True High), Overview ..... 384
B821-108 10-60 Vdc Input (True High), Field Connections ..... 385
B821-108 10-60 Vdc Input (True High), Specifications ..... 386
B821-108 Parameter Configuration ..... 388
Chapter 33 B824-016 24 Vdc Output (True High) ..... 389
B824-016 24 Vdc Output (True High), Overview ..... 390
B824-016 24 Vdc Output (True High), Field Connections ..... 391
B824-016 24 Vdc Output (True High), Specifications ..... 392
B824-016 Parameter Configuration ..... 393
Chapter 34 B825-016 24 Vdc Input (True High) ..... 395
B825-016 24 Vdc Input (True High), Overview ..... 396
B825-016 24 Vdc Input (True High), Field Connections ..... 397
B825-016 24 Vdc Input (True High), Specifications ..... 398
B825-016 Parameter Configuration ..... 399
Chapter 35 B826-032 24 Vdc Output (True High) ..... 401
B826-032 Parameter Configuration ..... 401
Chapter 36 B827-032 24 Vdc Input (True High) ..... 403
B827-032 24 Vdc Input (True High), Overview ..... 404
B827-032 24 Vdc Input (True High), Field Connections ..... 405
B827-032 24 Vdc Input (True High), Specifications ..... 406
B827-032 Parameter Configuration ..... 407
Chapter 37 B828-016 5 V TTL Output ..... 409
B828-016 5 V TTL Output, Overview ..... 410
B828-016 5 V TTL Output, Field Connections ..... 411
B828-016 5 V TTL Output, Specifications ..... 412
B828-016 Parameter Configuration ..... 413
Chapter 38 B829-116 Fast Response 5 V TTL Input ..... 415
B829-116 Fast Response 5 V TTL Input, Overview ..... 416
B829-116 Fast Response 5 V TTL Input, Field Connections ..... 417
B829-116 Fast Response 5 V TTL Input, Specifications ..... 418
B829-116 Parameter Configuration ..... 419
Chapter 39 B832-016 24 Vdc Output (True Low) ..... 421
B832-016 24 Vdc Output (True Low), Overview. ..... 422
B832-016 24 Vdc Output (True Low), Field Connections ..... 423
B832-016 24 Vdc Output (True Low), Specifications ..... 424
B832-016 Parameter Configuration ..... 425
Chapter 40 B833-016 24 Vdc Input (True Low) ..... 427
Overview ..... 427
B833-016 24 Vdc Input (True Low), Overview ..... 428
B833-016 24 Vdc Input (True Low), Field Connections ..... 429
B833-016 24 Vdc Input (True Low), Specifications ..... 430
B833-016 Parameter Configuration ..... 431
Chapter 41 B836-016 12-250 Vdc Isolated Output ..... 433
B836-016 12-250 Vdc Isolated Output, Overview ..... 434
B836-016 12-250 Vdc Isolated Output, Field Connections. ..... 435
B836-016 12-250 Vdc Isolated Output, Specifications ..... 437
B836-016 Parameter Configuration ..... 438
Chapter 42 B837-016 24 Vac/Vdc Input (True High) ..... 439
B837-016 24 Vac/Vdc Input (True High), Overview ..... 440
B837-016 24 Vac/Vdc Input (True High), Field Connections ..... 441
B837-016 24 Vac/Vdc Input (True High), Specifications ..... 442
B837-016 Parameter Configuration ..... 443
Chapter 43 B838-032 24 Vdc Output (True High) ..... 445
B838-032 24 Vdc Output (True High), Overview ..... 446
B838-032 24 Vdc Output (True High), Field Connections ..... 447
B838-032 24 Vdc Output (True High), Specifications ..... 448
B838-032 Parameter Configuration ..... 449
Chapter 44 B840-108 Relay Output ..... 451
B840-108 Relay Output, Overview ..... 452
B840-108 Relay Output, Field Connections ..... 454
840-108 Relay Output, Specifications ..... 455
B840-108 Parameter Configuration ..... 456
Chapter 45 B842-008 Reed Relay Output ..... 457
B842-008 Reed Relay Output, Overview ..... 458
B842-008 Reed Relay Output, Field Connections ..... 459
842-008 Reed Relay Output, Specifications ..... 460
B842-008 Parameter Configuration ..... 461
Chapter 46 B849-016 48 Vac/Vdc Input (True High) ..... 463
B849-106 48 Vac/Vdc Input (True High), Overview ..... 464
B849-016 48 Vac/Vdc Input (True High), Field Connections ..... 466
849-016 48 Vac/Vdc Input (True High), Specifications ..... 467
B849-016 Parameter Configuration ..... 468
Chapter 47 B853-016 115 Vac/125 Vdc Input (True High) ..... 469
B853-016 115 Vac/125 Vdc Input (True High), Overview ..... 470
B853-016 115 Vac/125 Vdc Input (True High), Field Connections ..... 472
B853-016 115 Vac/125 Vdc Input (True High), Specifications ..... 473
B853-016 Parameter Configuration ..... 474
Chapter 48 855-016 Intrinsically Safe Input ..... 475
B855-016 Intrinsically Safe Input, Overview ..... 476
B855-016 Intrinsically Safe Input, Installation ..... 477
B855-016 Intrinsically Safe Input, Specifications ..... 481
B855-016 Parameter Configuration ..... 483
Chapter 49 B862-001 Register Output ..... 485
B862-001 Register Output, Overview. ..... 486
B862-001 Register Output, Switch Settings ..... 487
B862-001 Register Output, Field Connections ..... 488
B862-001 Register Output, Specifications ..... 491
B862-001 Parameter Configuration ..... 492
Chapter 50 B863-032 Monitored 24 Vdc Input ..... 493
B863-032 Monitored 24 Vdc Input, Overview. ..... 494
B863-032 Monitored 24 Vdc Input, Field Connections ..... 495
B863-032 Monitored 24 Vdc Input, Specifications ..... 496
B863-032 Parameter Configuration ..... 497
Chapter 51 B863-132 24 Vdc Input ..... 499
B863-132 24 Vdc Input, Overview ..... 500
B863-132 24 Vdc Input, Switch Settings ..... 501
B863-132 24 Vdc Input, Field Connections ..... 502
B863-132 24 Vdc Input, Configuration ..... 503
B863-132 24 Vdc Input, Specifications. ..... 504
B863-132 Parameter Configuration ..... 505
Chapter 52 B864-001 Register Output. ..... 507
B864-001 Register Output, Overview. ..... 508
B864-001 Register Output, Switch Settings ..... 509
B864-001 Register Output, Field Connections ..... 510
B864-001 Register Output, Specifications ..... 513
B864-001 Parameter Configuration ..... 514
Chapter 53 B865-001 Register Input ..... 515
B865-001 Register Input, Overview ..... 516
B865-001 Register Input, Switch Settings ..... 518
B865-001 Register Output, Field Connections ..... 519
B865-001Register Input, Specifications ..... 522
B865-001 Parameter Configuration ..... 524
Chapter 54 B868-001 Register Output ..... 525
B868-001 Register Output, Overview. ..... 526
B868-001 Register Output, Switch Settings ..... 527
B868-001 Register Output, Field Connections ..... 528
B868-001 Register Output, Specifications ..... 531
B868-001 Parameter Configuration ..... 532
Chapter 55 B869-002 Register Input ..... 535
B869-002 Register Input, Overview ..... 536
B869-002 Register Input, Switch Settings ..... 538
B869-002 Register Output, Field Connections ..... 539
B869-002 Register Output, Specifications ..... 541
B869-002 Parameter Configuration ..... 542
Chapter 56 B881-001 Latched 24 Vdc Input ..... 545
B881-001 Latched 24 Vdc Input, Overview. ..... 546
B881-001 Latched 24 Vdc Input, Field Connections ..... 549
B881-001 Latched 24 Vdc Input, Specifications ..... 550
B881-001 Parameter Configuration ..... 551
Chapter 57 B881-508 125 Vdc Output ..... 553
B881-508 125 Vdc Output, Overview ..... 554
B881-508 125 Vdc Output, Fault Conditions. ..... 555
881-508 125 Vdc Output, Field Connections ..... 556
B881-508 125 Vdc Output, Specifications ..... 557
B881-508 Parameter Configuration ..... 558
Chapter 58 B882-032 24 Vdc Diagnostic Output and B818 20-28 Vac Discrete Output ..... 559
B882-032 24 Vdc Diagnostic Output, Overview ..... 560
B882-032 24 Vdc Diagnostic Output, Fault Conditions ..... 561
B882-032 24 Vdc Diagnostic Output, Field Connections ..... 563
B818, 20-28 Vac Output, Keying and Wiring ..... 564
B882-032 24 Vdc Diagnostic Output, Dip Switch Settings ..... 566
B882-032 24 Vdc Diagnostic Output, Specifications. ..... 567
B818, 20-28 Vac Output, Specifications ..... 568
B882-032 Parameter Configuration ..... 569
B818 Parameter Configuration ..... 570
Chapter 59 B882-116 24 Vdc Output ..... 571
B882-116 24 Vdc Output, Overview ..... 572
B882-116 24 Vdc Output, Field Connections ..... 573
B882-116 24 Vdc Output, Configuration ..... 574
B882-116 24 Vdc Output, Switch Settings ..... 577
B882-116 24 Vdc Output, Specifications ..... 578
B882-116 Parameter Configuration ..... 580
Part V $\mathbf{8 0 0}$ Series Special Purpose Modules ..... 583
Introduction ..... 583
Chapter 60 B882-239 High Speed Counter ..... 585
B882-239 High Speed Counter, Overview ..... 586
B882-239 High Speed Counter, Keying and Wiring ..... 587
B882-239 High Speed Counter, Specifications ..... 589
B882-239 Parameter Configuration ..... 591
Chapter 61 B883-001 High Speed Counter ..... 593
B883-001 High Speed Counter, Overview ..... 594
B883-001 High Speed Counter, Keying and Wiring ..... 595
B883-001 High Speed Counter, Specifications ..... 597
B883-001 Parameter Configuration ..... 598
Chapter 62 B883-101 and B883-111 CAM ..... 599
B883-101 \& B883-111 CAM, Overview. ..... 600
B883-101 and B883-111 CAM, Keying and Wiring ..... 601
B883-101 and B883-111 CAM, Specifications ..... 602
B883-101 and B883-111 Parameter Configuration ..... 603
Chapter 63 B883-200 Thermocouple Input Module ..... 605
B883-200 Thermocouple Input, Overview ..... 606
B883-200 Thermocouple Input, Keying and Wiring ..... 607
B883-200 Thermocouple Input, Specifications ..... 609
B883-200 Parameter Configuration ..... 610
Chapter 64 B883-201 RTD Input ..... 613
B883-201 RTD Input, Overview ..... 614
B883-201 RTD Input, Keying and Wiring ..... 615
B883-201 RTD Input, Specifications ..... 617
B883-201 Parameter Configuration ..... 618
Chapter 65 B884-002 PID ..... 621
B884-002 PID, Overview ..... 622
B884-002 PID Control, Keying and Wiring ..... 623
B884-002 PID Control, Specifications ..... 625
B884-002 Parameter Configuration ..... 626
Chapter 66 B885-002 ASCII / BASIC ..... 629
B885-002 ASCII / BASIC, Overview ..... 630
B885-002 ASCII / BASIC, Keying and Wiring. ..... 631
B885-002 ASCII / BASIC, Specifications ..... 632
B885-002 Parameter Configuration ..... 633
Index ..... 635

## Safety Information



## Important Information

## NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.


The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.


This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

## 4 DANGER

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death, serious injury, or equipment damage.

## WARNING

WARNING indicates a potentially hazardous situation, which, if not avoided, can result in death, serious injury, or equipment damage.

## $\triangle$ CAUTION

CAUTION indicates a potentially hazardous situation, which, if not avoided, can result in injury or equipment damage.

[^0]
## About the Book



## At a Glance

Document Scope This manual is a reference document for the Modicon Quantum 800 Series I/O Modules with Unity. The manual provides an overview, keying and wiring information, specifications, and parameter configuring information for four types of modules:

- RIO drop
- analog
- discrete
- special purpose


## Note: 984LL and IEC notation

The manual displays both 984LL and IEC notation, but most module descriptions use 984LL notation. Conversion charts appear in the first chapters.

- (See Converting Direct Address Notation, p. 25)
- (See Introduction, p. 32)


## Note: Audience

Users should be familiar with automation controls and be qualified to install and operate automation equipment.

Note: Module availability

- Some modules may no longer be available for sale.
- For the status of particular modules, please contact your local sales office.
- To locate a sales office,

1. visit http://www.schneider-electric.com
2. Select your country in the drop-down menu.

| Validity Note | The data and illustrations found in this documentation are not binding. We reserve <br> the right to modify our products in line with our policy of continuous product <br> development. The information in this document is subject to change without notice <br> and should not be construed as a commitment by Schneider Electric. |  |
| :--- | :--- | :--- |
|  | Related  <br> Documents Title of Documentation |  |
| Quantum Hardware Reference Manual | UNYUSE10010V11E <br> (part of this package) |  |
|  | Grounding and Electromagnetic Compatibility of PLC Systems <br> User Manual | UNYUSE10010V11E <br> (part of this package) |

## Product Related Warnings

## User Comments

We welcome your comments about this document. You can reach us by e-mail at TECHCOMM@modicon.com

## Overview of Modicon Quantum 800 Series I/O Modules with Unity

## Introduction

| At a Glance | This part provides a global overview of the 800 Series I/O modules. The content <br> provides the description of generic features common to all modules. |  |
| :--- | :--- | :--- |
|  | What's in this <br> Part? | This part contains the following chapters: |
| 1 | Modicon Quantum 800 Series I/O Modules with Unity-Overview and <br> Configuration | 23 |
| 2 | Modicon Quantum 800 Series I/O Modules with Unity Addressing Modes | 31 |
| 3 | Modicon Quantum 800 Series I/O Modules with Unity | 35 |

# Modicon Quantum 800 Series I/O Modules with Unity-Overview and Configuration 

## 1

## At a Glance

| Purpose | This chapter describes both configuring the modules with Unity Pro and the <br> available 800 Series I/O modules, including their basic technical features. |
| :--- | :--- |

What's in this Chapter?

This chapter contains the following topics:

| Topic | Page |
| :--- | :--- |
| Configuring Modicon Quantum 800 Series I/O Modules with Unity | 24 |
| Technical Features Overview—Modicon Quantum 800 Series I/O Modules with Unity | 26 |

## Configuring Modicon Quantum 800 Series I/O Modules with Unity

Introduction

Adding a RIO Bus

To configure a Series 800 I/O module under Unity, configure a RIO drop, which contains I/O modules. The following description gives you step by step instructions to implement and configure Series 800 I/O modules into a Modicon Quantum with Unity system.

To add a RIO Bus to a Modicon Quantum with Unity system,

| Step | Action | Comment |
| :--- | :--- | :--- |
| 1 | From the Project Browser <br> "Configuration" tree, open the <br> local Quantum rack | The graphical representation of the local Quantum <br> rack opens. |
| 2 | Double-click an empty slot in <br> the rack where you want to <br> place your RIO head. | The "New Device" dialog window opens. |
| 3 | Open the "Communication" <br> tree and double-click on the <br> 140 CRP 93X 00 module. | The RIO head module is added to the local Quantum <br> rack. <br> In the Project Browser "Configuration" tree the "RIO <br> bus" is automatically added. |

Adding a 800 I/O Drop

To add a 800 I/O Drop to a Modicon Quantum with Unity system,

| Step | Action | Comment |
| :--- | :--- | :--- |
| 1 | From the Project Browser "Configuration" tree, <br> double-click the "RIO bus" | The graphical representation <br> of the RIO bus opens. |
| 2 | Double-click an empty node of the RIO bus | The "New Device" dialog <br> window opens. |
| 3 | In the "New Device" dialog window, select both the <br> appropriate rack from the "800 IO Drop" tree and a <br> "Drop-end communicator" module. | A new 800 I/O rack containing <br> a communication module is <br> added to your RIO bus. |
| 4 | Click OK. |  |

When the configuration window opens, enter the following parameters:

| Parameter Name | Description |
| :--- | :--- |
| MAPPING | Define whether access is either <br> 1. Bits $(\% I-1 \mathrm{x}, \% \mathrm{M}-0 \mathrm{x})$ <br> 2. Words $(\% \mathrm{IW}-3 \mathrm{x}, \% \mathrm{MW}-4 \mathrm{x})$ |
| INPUTS STARTING <br> ADDRESS | In the address type, as defined by the MAPPING parameter, <br> enter the starting address of the input data. |
| INPUTS ENDING ADDRESS | Parameter automatically calculated by the system. |
| OUTPUTS STARTING <br> ADDRESS | In the address type, as defined by the MAPPING parameter, <br> enter the starting address of the output data. |
| OUTPUTS ENDING <br> ADDRESS | Parameter automatically calculated by the system. |
| OUTPUT TYPE | Define whether data value is interpreted either as <br> 1. BINARY <br> 2. BCD |

Use the following table to convert 984LL notation to IEC notation.

| Outputs <br> and Inputs | 984LL Notation <br> Register <br> Addresses | IEC Notation | System Bits <br> and Words | Memory <br> Addresses |
| :--- | :--- | :--- | :--- | :--- |
| I/O Addresses |  |  |  |  |
| output | $0 x$ | System Bit | \%Mx | \%Qx |
| input | 1 x | System Bit | \%Ix | \%Ix |
| input | $3 x$ | System Word | \%IWx | \%IWx |
| output | 4 x | System Word | \%MWx | \%QWx |

Adding a 800 I/O Module

To add a new I/O module to your RIO Drop

| Step | Action | Comment |
| :--- | :--- | :--- |
| $\mathbf{1}$ | From the "RIO Bus" configuration window, double-click an <br> empty slot in the rack where you want to place your I/O <br> module. | The "New Device" <br> dialog window opens. |
| $\mathbf{2}$ | From the "New Device" window, open the list of analog or <br> discrete modules and double-click on the appropriate <br> module. | The I/O module is <br> added to the rack. |

To configure an I/O module,

1. Double click on the module.

## Configuring a Module

Converting Direct Address Notation

## Technical Features Overview-Modicon Quantum $\mathbf{8 0 0}$ Series I/O Modules with Unity

Introduction The following tables provide an overview of the technical features for all Series 800 I/O.

- RIO Interface modules (See RIO Interface Modules, p. 26)
- Analog I/O modules (See Analog Modules, p. 27)
- Discrete I/O modules (See Discrete Modules, p. 28)
- Special Purpose I/O modules (See Special Purpose Modules, p. 30)

RIO Interface Modules

The following table displays a summary of the technical data for the RIO interface modules. For detailed information about a module, see its chapter.

| Module | Type | Range | Channels | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| J890 | Drop Interface | - | - | - |
| J892 | Drop Interface | - | - | - |
| P890 | Direct Interface | - | - | - |
| P892 | Direct Interface | - | - | - |

Analog Modules The following table displays a summary of the technical data for the analog modules. For detailed information about a module, see its chapter.

| Module | Type | Range | Channels | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| B846-001 | In | $\begin{aligned} & 0-5 \mathrm{~V} \\ & 1-5 \mathrm{~V} \\ & +/-10 \mathrm{~V} \end{aligned}$ | 16 | Reed-Relay-Multiplexer for voltage input as front end for A/D-Converter B873/875. <br> 1 Word (Bin) |
| B846-002 | In | 4-20 mA | 16 | Reed-Relay-Multiplexer for current input (Input impedance 250 Ohm) as front end for A/D-Converter B873/875. <br> 1 Word (Bin) |
| B872-100 | Out | 4-20 mA | 4 | User supply required. |
| B872-200 | Out | $\begin{aligned} & \text { 0-5 VDC } \\ & 0-10 \text { VDC } \\ & +/-5 \text { VDC } \\ & +/-10 \text { VDC } \end{aligned}$ | 4 | Operating range selectable per channel. No user supply required. |
| B873-002 | In | $\begin{aligned} & 1-5 \mathrm{VDC} \\ & 4-20 \mathrm{~mA} \end{aligned}$ | 4 | 4 Words (Bin) |
| B875-002 | In | $\begin{aligned} & 1-5 \mathrm{VDC} \\ & 4-20 \mathrm{~mA} \end{aligned}$ | 8 | 8 Words (Bin) |
| B873-012 | In | +/-10 VDC | 4 | 4 Words Out (Bin) |
| B875-012 | In | +/-10 VDC | 8 | 8 Words Out (Bin) |
| B875-102 | In | $\begin{aligned} & 1-5 \mathrm{VDC} \\ & 0-5 \mathrm{VDC} \\ & 0-10 \mathrm{~V} \\ & +/-5 \mathrm{~V} \\ & +/-10 \mathrm{~V} \\ & 4-20 \mathrm{~mA} \\ & 0-20 \mathrm{~mA} \\ & 0-40 \mathrm{~mA} \\ & +/-20 \mathrm{~mA} \\ & +/-40 \mathrm{~mA} \end{aligned}$ | 4 (8) | High Speed |
| B875-111 | In | $\begin{aligned} & 1-5 \mathrm{VDC} \\ & 0-5 \mathrm{VDC} \\ & 0-10 \mathrm{~V} \\ & +/-5 \mathrm{~V} \\ & +/-10 \mathrm{~V} \\ & 4-20 \mathrm{~mA} \\ & 0-20 \mathrm{~mA} \\ & +/-20 \mathrm{~mA} \end{aligned}$ | 8 differential or 16 single | 8 Words (Bin) As B877 = 16 Words (Bin) |
| B875-114 | In | 0-2 mA | 8 differential |  |
| B875-200 | In | $\begin{aligned} & 4-20 \mathrm{~mA} \\ & 1-5 \mathrm{~V} \\ & \text { RTD/TC } \\ & 0-10 \mathrm{~V} \\ & 0-20 \mathrm{~mA} \end{aligned}$ | 8 | A/D Converter with plug able input amplifier modules |

Discrete
Modules

The following table displays a summary of the technical data for the discrete modules. For detailed information about a module, see its chapter.

| Module | Type | Range | Channels | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| B802-008 | Out | $\begin{aligned} & 80-130 \mathrm{Vac} \text { cont. / } \\ & 47-63 \mathrm{~Hz} \end{aligned}$ | 8 | Individually isolated |
| B803-008 | In | $\begin{aligned} & 80-130 \mathrm{Vac} \text { cont. / } \\ & 47-63 \mathrm{~Hz} \end{aligned}$ | 8 | Individually isolated |
| B804-116 | Out | $\begin{aligned} & 80-130 \mathrm{Vac} \text { cont. / } \\ & 47-63 \mathrm{~Hz} \end{aligned}$ | 16 | Isolated 2 groups / 8 points per group |
| B804-148 | Out | $\begin{aligned} & 40-56 \mathrm{Vac} / \\ & 47-63 \mathrm{~Hz} \end{aligned}$ | 16 | Isolated <br> 2 groups / 8 points per group |
| B805-016 | In | $\begin{aligned} & 80-130 \mathrm{Vac} \text { cont. / } \\ & 47-63 \mathrm{~Hz} \end{aligned}$ | 16 | Isolated <br> 2 groups / 8 points per group |
| B806-032 | Out | 80-130 Vac cont. / $47-63 \mathrm{~Hz}$ | 32 |  |
| B806-124 | Out | $\begin{aligned} & 20-28 \text { Vac cont. / } 47 \\ & -63 \mathrm{~Hz} \\ & 32 \mathrm{Vac} \text { RMS max. for } \\ & 10 \mathrm{~s} \end{aligned}$ | 32 | 2 groups / 16 points per group |
| B807-132 | In | $\begin{aligned} & 80-130 \text { Vac cont. / } \\ & 47-63 \mathrm{~Hz} \end{aligned}$ | 32 | 4 groups / 8 points per group |
| B808-016 | Out | $\begin{aligned} & 180-260 \mathrm{Vac} / \\ & 47-63 \mathrm{~Hz} \end{aligned}$ | 16 | 2 groups / 8 points per group |
| B809-016 | In | $\begin{aligned} & 160-260 \mathrm{Vac} / \\ & 47-63 \mathrm{~Hz} \end{aligned}$ | 16 | 2 groups / 8 points per group |
| B810-008 | Out | $\begin{aligned} & 80-130 \mathrm{Vac} \text { cont. / } \\ & 47-63 \mathrm{~Hz} \end{aligned}$ | 8 | Isolated |
| B814-108 | Out | $\begin{aligned} & 0-30 \mathrm{Vdc} \\ & 0-240 \mathrm{Vac} / \\ & 47-63 \mathrm{~Hz} \end{aligned}$ | 8 | Relay |
| B817-116 | In | 115 Vac | 16 | Isolated |
| B817-216 | In | 230 Vac | 16 | Isolated |
| B820-008 | Out | 10-60 Vdc | 8 | True high |
| B821-108 | In | $10-60 \mathrm{Vdc}$ | 8 | True high |
| B824-016 | Out | 20-28 Vdc | 16 | True high |
| B825-016 | In | 20-28 Vdc | 16 | True high |
| B827-032 | In | 18-30 Vdc | 32 | True high |
| B828-016 | Out | 5 V TTL | 16 |  |
| B829-116 | In | 5 V TTL | 16 | High speed TTL |


| Module | Type | Range | Channels | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| B832-016 | Out | 20-28 Vdc | 16 | True low |
| B833-016 | In | 20-28 Vdc | 16 | True low |
| B836-016 | Out | 12-250 Vdc | 16 | Isolated |
| B837-016 | In | $\begin{aligned} & 20.4-27 \mathrm{Vac} / \\ & 47-63 \mathrm{~Hz} \\ & 19.2-30 \mathrm{Vdc} \end{aligned}$ | 16 | Isolated <br> 2 groups / 8 points per group |
| B838-032 | Out | 20-30 Vdc | 32 | True high |
| B840-108 | Out | $\begin{aligned} & 0-300 \text { Vdc max. } \\ & 0-230 \mathrm{Vac} \text { max. / } 47 \\ & -63 \mathrm{~Hz} \end{aligned}$ | 8 | Relay |
| B846-001 | In | $\begin{aligned} & 0-5 \mathrm{~V} \\ & 1-5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \end{aligned}$ | 16 | 1 Word Out (Bin) |
| B846-002 | In | 4-20 mA | 16 | 1 Word Out (Bin) |
| B849-016 | In | $\begin{aligned} & 41-53 \mathrm{Vac} / \\ & 47-63 \mathrm{~Hz} \\ & 39-58 \mathrm{Vdc} \end{aligned}$ | 16 |  |
| B853-016 | In | $\begin{aligned} & 80-130 \mathrm{Vac} / \\ & 47-63 \mathrm{~Hz} \\ & 85-150 \mathrm{Vdc} \end{aligned}$ | 16 | True high |
| B855-016 | In | 11.4-12.6 Vdc | 16 | Isolated |
| B863-032 | In | 18-30 Vdc true high 24 Vdc nominal | 32 |  |
| B863-132 | In | 0-30 Vdc | 32 |  |
| B864-001 | Out |  | 8 | 8 channel reg. mux |
| B865-001 | In | 5 V TTL | 8 | 8 channel reg. mux |
| B881-001 | In | 20-28 Vdc | 16 |  |
| B881-508 | Out | 5-140 Vdc maximum | 8 |  |
| B882-032 | Out | 19.2-28 Vdc | 32 |  |
| B882-116 | Out | 19.2-30 Vdc | 16 |  |

Special Purpose Modules

The following table displays a summary of the technical data for the special purpose modules. For detailed information about a module, see its chapter.

| Module | Type | Range | Channels | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| B882-239 | High <br> Speed <br> Counter | 30 kHz <br> 350 Hz | 4 inputs <br> 3 outputs |  |
| B883-001 | High <br> Speed <br> Counter | 50 kHz | 2 | 3 outputs |
| B883-101 | CAM | 4 | - | - |
| B883-200 | Thermoco <br> uple Input | Centigrade <br> Farenheit <br> Millivolts | 10 In | Open circuit detect <br> Self-calibrated |
| B883-201 | RTD Input | Centigrade <br> Farenheit | 8 | American <br> European <br> Linear |
| B884-002 | PID Loop | N/A | 2 | Open/closed loop |
| B885-002 | ASCII/ <br> BASIC | N/A | 2 | RS232 <br> RS422 |

# Modicon Quantum 800 Series I/O Modules with Unity Addressing Modes 

## At a Glance

| Purpose | To allow an easy transition from the register addressing ( $3 x, 4 x$ ) of 984 LL to the IEC addressing modes used in Unity Pro, this chapter describes <br> - Flat Addressing <br> - Topological Addressing |  |
| :---: | :---: | :---: |
| What's in this Chapter? | This chapter contains the following topics: |  |
|  | Topic | Page |
|  | Flat Addressing-Modicon Quantum 800 Series I/O Modules | 32 |
|  | Topological Addressing-Modicon Quantum 800 Series I/O Modules with Unity | 33 |
|  | Addressing Example-Modicon Quantum 800 Series I/O Modules with Unity | 34 |

## Flat Addressing-Modicon Quantum 800 Series I/O Modules

Introduction The Modicon Quantum with Unity modules follow a system of flat address mapping. To work properly. each module requires a determinate number of bits and/or words. The IEC addressing system is equivalent to the 984LL register addressing. Use the following assignments:

- $0 x$ is now $\% M x$
- $1 x$ is now \%lx
- $3 x$ is now \%IWx
- $4 x$ is now $\% M W x$

Use the following table to convert 984LL notation to IEC notation.

| Outputs <br> and Inputs | 984LL Notation <br> Register <br> Addresses | IEC Notation | System Bits and Words | Memory <br> Addresses |
| :--- | :--- | :--- | :--- | :--- |
|  | I/O <br> Addresses |  |  |  |
| output | $0 x$ | System Bit | \%Mx | \%Qx |
| input | 1 x | System Bit | \%Ix | \%Ix |
| input | $3 x$ | System Word | \%IWx | \%IWx |
| output | $4 x$ | System Word | \%MWx | \%QWx |

To access the I/O data of a module,

| Step | Action |
| :--- | :--- |
| 1 | Enter the address range in the configuration screen. |

Examples The following examples show the relationship between 984LL register addressing and IEC addressing:
000001 is now \%M1
100101 is now \%l101
301024 is now \%IW1024
400010 is now \%MW10

## Topological Addressing-Modicon Quantum 800 Series I/O Modules with Unity

```
Introduction Use topological addressing to access I/O data items. Identify the topological location
        of the module within a Modicon Quantum with Unity system using the following
        notation:
    %<Exchangetype><Objecttype>[\b.e\]r.m.c[.rank]
    Abbreviations used:
    - b = bus
    - e= equipment (drop)
- r= rack
- m=module slot
- c = channel
```

Note: When addressing,

1. The $\lceil\mathrm{b} . \mathrm{e} \backslash]$ defaults to $\backslash 1.1 \backslash$ in a local rack and does not need to be specified.
2. The rank is an index used to identify different properties of an object with the same data type (value, warning level, error level).
3. The rank numbering is zero-based, and if the rank is zero, omit the entry.

For detailed information on I/O variables, please refer to the Unity Pro Reference Manual.

## Example Reading Values

| To read | Action |
| :--- | :--- |
| input value (rank $=0$ ) from channel 7 of an analog module located <br> in slot 6 of a local rack: | Enter <br> $\% I W 1.6 .7[.0]$ |
| input value (rank $=0$ ) from channel 7 of an analog module located <br> in drop 3 of RIO bus 2: | Enter <br> $\% I W \backslash 2.3 \backslash 1.6 .7[.0]$ |
| 'out of range' value (rank $=1$ ) from channel 7 of an analog module <br> located in slot 6 of a local rack: | Enter <br> $\% I 1.6 .7 .1[.0]$ |

## Addressing Example-Modicon Quantum 800 Series I/O Modules with Unity

Analog Module \begin{tabular}{l}
The following example compares the 2 possible addressing modes. An 8-channel <br>
analog input module B875-200 with the following configuration data is used: <br>

- mounted in slot 5 of the RIO rack \#3 located at drop 4 on bus 2 <br>
- starting input address is 201 (input word \%IW201) <br>
- end input address is 208 (input word \%IW208) <br>
To access the I/O data from the module you can use the following syntax: <br>

$\qquad$| Module data | Flat addressing | Topological <br> addressing | Concept addressing |
| :--- | :--- | :--- | :--- |
| Channel 3 | $\%$ IW203 | $\%$ IW2.4l3.5.3 | 300203 |


 

\end{tabular}

For comparison, the register addressing as used with Concept is added in the last column.

Discrete Module The following example compares the 2 possible addressing modes. An 32-channel discrete output module B838-032 with the following configuration data is used:

- mounted in slot 4 of the RIO rack \#3 located at drop 4 on bus 2
- starting output address is 101 (output word \%MW101)
- end output address is 102 (output word \%MW102)

To access the I/O data from the module you can use the following syntax:

| Module data | Flat addressing | Topological addressing | Concept <br> addressing |
| :--- | :--- | :--- | :--- |
| Output 5 | \%MW101.11 | \%QW\2.4\3.4.1.1.11 | 300101 |
| Output17 | \%MW102.15 | \%QW\2.4\3.4.1.2.15 | 300102 |

For comparison, the register addressing as used with Concept is added in the last column. As Concept does not support direct addressing of a bit in a word, the bit extraction has to be performed in the user program.
The same configuration as before but data mapped into bits:

- mounted in slot 4 of the RIO rack \#3 located at drop 4 on bus 2
- starting output address is 1 (output \%M1)
- end output address is 32 (output \%M32)

To access the I/O data from the module you can use the following syntax:

| Module data | Flat addressing | Topological <br> addressing | Concept addressing |
| :--- | :--- | :--- | :--- |
| Output 5 | \%M5 | \%Q\2.4\3.4.5 | 000005 |
| Output17 | \%M17 | \%Q\2.4\3.4.17 | 000017 |

For comparison, the register addressing as used with Concept is added in the last column.

# Modicon Quantum 800 Series I/O Modules with Unity 

## 3

## At a Glance

Purpose This chapter describes in brief the Modicon Quantum with Unity 800 Series I/O modules. Detailed information about each module is covered in individual chapters.

What's in this Chapter?

This chapter contains the following topics:

| Topic | Page |
| :--- | :--- |
| Main Features-Modicon Quantum 800 Series I/O Modules with Unity | 36 |
| Indicators-Modicon Quantum 800 Series I/O Modules with Unity | 37 |
| I/O Map-Modicon Quantum 800 Series I/O Modules with Unity | 38 |
| Grounding Guidelines-Modicon Quantum 800 Series I/O Modules with Unity | 39 |
| Installation Guidelines-Modicon Quantum 800 Series I/O Modules with Unity | 40 |
| Requirements-Modicon Quantum 800 Series I/O Modules with Unity | 44 |
| CE Installation-Modicon Quantum 800 Series I/O Modules with Unity | 45 |
| Installation Parts List-Modicon Quantum 800 Series I/O Modules with Unity | 46 |
| Key Pin Assignments-Modicon Quantum 800 Series I/O Modules | 47 |
| Quick Start Test—Modicon Quantum 800 Series I/O Modules with Unity | 50 |
| Analog Module Specifications-Modicon Quantum 800 Series I/O Modules with Unity | 51 |
| Discrete Module Specifications-Modicon Quantum 800 Series I/O Modules with <br> Unity | 52 |

## Main Features-Modicon Quantum 800 Series I/O Modules with Unity

List of Features Each module offers

- Status indicators
- Front accessible fuses
- Handle that permits easy installation and removal
- Safe, nonconductive front that permits easy access of test probes
- Each point electrically isolated from logic by an optical coupler

Each module

- Is removable without disturbing rigid field wiring system
- Designed for harsh plant floor environments
- Satisfies SWC requirements of both IEEE and ANSI guidelines


## Operating Facts Note the following.

| Fact about | Description |
| :--- | :--- |
| Voltage transients | The I/O signals can withstand the severe voltage transients normally <br> encountered in industrial environments without damage to the I/O <br> module or controller. |
| Communication <br> failures | All I/O points shut OFF in the event of a communication failure between <br> a Modicon controller and the I/O module. Shut OFF occurs within 300 ms <br> of the signal loss. The module's ACTIVE indicator will also shut OFF. |
| Installing modules | The I/O modules can be inserted into any location in the 800 series I/O <br> structure. The module slides easily into the module housing and does <br> not interfere with any other module's operation. |
| Logic circuitry | The module's protective case shields the logic circuitry from any <br> electrical interference and minimizes the possibility of any noise being <br> coupled from the user side of the circuitry to adjacent modules. |
| Grounding | A ground is automatically established when the module is inserted into <br> the housing. <br> This low impedance earth ground originates from the housing's <br> backplane. |

## Indicators-Modicon Quantum 800 Series I/O Modules with Unity

| Types of Indicators | The status indicators on the front of the module are listed below. |  |
| :---: | :---: | :---: |
|  | Indicator | Description |
|  | Active | The green indicator <br> - is ON when the module has passed its power diagnostics without error <br> - remains ON until the background diagnostics detect <br> 1. an error condition <br> 2. loss of internal voltage <br> 3. loss of communication with the CPU |
|  | Discrete I/O | These red output indicators, when ON, indicate that power is available at the output of the module for use by field devices. |
|  | Blown Fuse | These red indicators, when ON, indicate that a fuse is blown. |
|  | Over Range | These red indicators, when ON or FLICKERING, indicate that one or more inputs have exceeded the valid input range. |
|  | Under Range | These red indicators, when ON or FLICKERING, indicate that one or more inputs have dropped below the valid input range. |
|  | Field Power | These red indicators, when ON, indicate that field power is supplied. |

Note: The active indicator does not represent the condition of the I/O points. The indicator may be lit with one or more of the I/O points not working properly.

## I/O Map—Modicon Quantum 800 Series I/O Modules with Unity

I/O Map Characteristics

The I/O Map is used to direct the flow of data between the various I/O modules and the logic program. It is the tie between the references used in the logic program and the I/O module connection points.
The I/O Map also tells the controller how to use an input signal in user logic and where to send an output signal. The format of register data (BCD binary coded decimal or BIN binary) is specified on the I/O Map screen. The screen objective is to load the card selections and reference number selections to complete the configuration of the I/O.
In the Configuration Overview screen, the number of I/O drops and I/O modules must be specified. These numbers are checked when entries to the I/O Map screen are made.

## Grounding Guidelines-Modicon Quantum 800 Series I/O Modules with Unity

| Ground and <br> Shield <br> Guidelines | 1 To have proper case ground, the housing must be connected to an earth ground. <br> 2 When using shielded, field circuit wires, do not ground the shield at both ends of the <br> circuit (for example, the module and the field device). <br> 3 Single point grounding should be used where possible. <br> 4 Priority for shield grounding: <br> 1. Field side device case, if metal <br> 2. Earth ground, as close to the field side device or module as possible <br> 3. From shield to frame |
| :--- | :--- | :--- |

## Installation Guidelines-Modicon Quantum 800 Series I/O Modules with Unity

Installing an 800 The following table provides the steps involved, to install an 800 Series I/O Module: Series I/O Module

| Step | Action |
| :--- | :--- |
| 1 | Remove module from its shipping box. |
| 2 | Check for damage. <br> If damaged, contact your salesman or distributor for correct procedure. |
| 3 | Ensure power to housing is OFF. |
| 4 | Designate the housing slot for this module. |
| 5 | Locate required connector assembly. <br> (Modicon Part number AS-8534-000 or AS-8535-000). <br> This assembly consists of one or two 20-pin connectors. <br> Note: Remove the keying tabs on the connector prior to installing the module. |
| 6 | Remove old duct. <br> Remove only if a different connector/cabling duct assembly is already present in the designated housing slot. |
| 7 | (Optional Step) If there is a module to the immediate left of the slot designated for the new module's installation, <br> temporarily remove it. |



## Connecting an <br> Step Action Element 800 Series I/O Module

| Step | Action |
| :---: | :---: |
| 1 | Field Connection <br> Connect field side wiring to proper pins on the field connector. <br> Terminals accept either two 14-AWG size wires or one 12-AWG size wire per point. <br> Note: <br> 1. All low current input modules are susceptible to fretting (wear) corrosion of field wiring connectors; these modules include analog, D/A, A/D, TTL. Muxs, etc. (B873, B875, B846, etc.). <br> 2. Schneider Electric recommends applying NYOGEL 759 G lubricant to the connector to prevent fretting. Modicon part number is 99-C759-x00. <br> 3. When making connections to this module, electrical equipment should be serviced only by qualified personnel. <br> 4. If you are using stranded wire, ensure that loose or projecting strands do not short circuit or ground the other terminals. <br> 5. Schneider Electric recommends that you use solid wire. <br> 6. When performing this step, refer to the appropriate chapter in the manual of the 800 Series module you are installing for the appropriate connector type. |
| 2 | Re-install any module temporarily removed. <br> Note: When performing this step, refer to Appendix A for illustrations of optional key pin patterns for the 800 Series module you are installing. Appendix A contains key pin patterns for all 800 series I/O modules. |
| 3 | When using key pins ${ }^{1}$, install them above and below the selected housing slot for this module. <br> 1. Key pins are provided with housing shipment. <br> The following figure shows an optional mechanical keying system (Key Pin Location) used to match the module type with a particular slot in the housing. <br> LOOKING AT FRONT OF HOUSING - OVER MODULE SLOT <br> When facing housing, place the knurled end of the key pins into the holes indicated by the "P." Use a $1 / 2$ " plastic head mallet or equivalent to drive the pin into the housing approximately $1 / 4$ of an inch. <br> NOTE: The keying system is optional. |


| Step | Action |
| :--- | :--- |
| 4 | Insert module into housing. <br> Firmly but carefully seat the edge connector in the backplane. <br> Note: First time installation of a module may be tight. |
| 5 | Secure module to housing. <br> Use captive slotted mounting screws at the top and bottom of the module's front panel. |
| 6 | After confirming all modules are properly installed, <br> 1. apply applicable field power <br> 2. re-apply power to the programmable controller |
| 7 | l/O Map the module. |
| 8 | Start the controller. |
| 9 | Confirm that the module's active light is illuminated. |

## Requirements-Modicon Quantum 800 Series I/O Modules with Unity

Requirements The following requirements should be followed for installations complying with the
List

| Requirement for | Description |
| :--- | :--- |
| Power supply and <br> I/O lines | All wiring for power supply and I/O lines must be in grounded steel <br> conduits (EMT) or must use braided shielded cable. <br> If shielded cable is used, the braid must have 80\% or more shield <br> coverage, and the outside diameter of the braid (without jacket) must <br> be in the range of $0.189 \ldots 0.237$ in (4.8 ... 6.0 mm ). |
| Cable shields | All cable shields must be grounded, using clips on the Grounding Bar <br> (Modicon part number CER001). <br> Shield is not terminated at module field connector. |
| Grounding | Install braided earth ground to both <br> - grounding clip (or clips as required) <br> - backplane ground reference |
| Line filters | Use a 110/220 Vac Line Filter (Schaffner part number FN670-30/6). <br> Install as shown in the AC power input figure. |

## CE Installation-Modicon Quantum 800 Series I/O Modules with Unity

Remote Drop Example


Typical CE Installation for a Remote Drop


## Installation Parts List—Modicon Quantum $\mathbf{8 0 0}$ Series I/O Modules with Unity

Manufacturers Part Numbers/ Instructions

| Callout | Vendor | Part <br> Number | Description | Instructions |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Schaffner | FN670-3/06 | Line Filter (Fast on terminals) <br> Dimensions: <br> Length: 3.4 in ( 85 mm ) <br> Width: 2.2 in ( 55 mm ) <br> Height: 1.6 in ( 40 mm ) <br> Mounting Holes: <br> 0.2 in ( 5.3 mm ) dia. <br> 3 in ( 75 mm ) centerline mounted <br> Fast on Terminals: <br> 0.25 in ( 6.4 mm ) | Install next to the 984 CPU. |
| 2 | Modicon | CER001 or equivalent | Grounding Bar | All cable shields must be grounded. NOTE: Not required if using steel conduit. |
| 3 |  |  | Flat Ground Braided Cable |  |
| 4 | Oflex | $\begin{array}{\|l} 35005 \\ 3 \text { conductor } \\ 100 \mathrm{cy} \\ \text { Series } \end{array}$ | Shielded Cable maximum length: 30 in ( 760 mm ) | The shield is terminated at the EMI Line Filter and open at CPU end. The third conductor is not used. |
| 5 | Oflex | $35005$ <br> 3 conductor 100cy <br> Series | Shielded Cable | Terminate the shield at panel ground, at EMI Filter. |

## Key Pin Assignments-Modicon Quantum 800 Series I/O Modules

Charts The key pin assignments chart is provided in the following tables.

## AS-B803-008 AS-B803-008

|  |  |  |  |  | ${ }^{0}{ }_{0}^{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}^{\circ} \mathrm{O}$ | AS-B802-008 | AS-B803-008 | AS-B804-016 | AS-B805-016 | AS-B806-032 |
|  | AS-B808-016 | AS-B809-016 | AS-B820-008 | $\begin{aligned} & \text { AS-B821-008 } \\ & \text { AS-B821-108 } \end{aligned}$ | AS-B822-008* |
|  | AS-B824-016 | AS-B825-016 | AS-B826-032 | AS-B827-032 | $\begin{aligned} & \text { AS-B875-011 } \\ & \text { AS-B875-012 } \end{aligned}$ |
|  | $\begin{aligned} & \text { AS-B840-008 } \\ & \text { AS-B840-108 } \end{aligned}$ | AS-B841-008 | AS-B850-016* | AS-B842-008 | AS-B852-016* |
|  | AS-B855-016 | AS-B810-008 | AS-B828-016 | AS-B873-011 | AS-B833-016 |
| $0^{0}$ | AS-B862-001 | AS-B863-001 | AS-B864-001 | AS-B857-032* | AS-B851-016* |
| ${ }_{0}^{0}$ | AS-B865-001 | AS-B868-001 | AS-B869-001 | AS-B872-002 | AS-B873-001 |
| ${ }_{0}^{0}$ | AS-B875-111 | AS-B881-308 | AS-B872-100 | AS-B872-200* | AS-B875-200 |
|  | AS-B819-232* | AS-B804-148 | AS-B882-116 |  |  |
|  |  | AS-B806-124 |  |  |  |

NOTE: Indicates keying pin locations.
NOTE: * Indicates these modules may be obsoleted or superseded. Please contact your local distributor for more details.

The key pin assignments chart is provided in the following table.

|  |  |  |  | $\mathrm{O}^{\circ}$ | ${ }^{0}{ }_{0}^{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | AS-B807-032 | $\begin{aligned} & \text { AS-B814-001 } \\ & \text { AS-B814-108 } \end{aligned}$ | AS-B814-002 | AS-B816-016 | AS-B817-116 |
|  | AS-B823-008* | AS-B846-002 | AS-B836-016 | AS-B837-016 | AS-B849-016 |
| $\mathrm{O}^{0} \mathrm{O}$ | $\begin{aligned} & \text { AS-B829-016 } \\ & \text { AS-B829-116 } \end{aligned}$ | AS-B872-011 | AS-B883-200 | AS-B8883-211 | AS-B817-216 |
|  | AS-B853-016 | AS-B883-001 | AS-B886-001 | AS-B884-001 | AS-B883-201 |
|  | AS-B832-016 | $\begin{aligned} & \text { AS-B883-101 } \\ & \text { AS-B883-111 } \end{aligned}$ | AS-B886-011 | $\begin{aligned} & \text { AS-B885-001 } \\ & \text { AS-B885-002 } \end{aligned}$ | AS-B838-032 |
|  | AS-B846-001 | AS-B881-001 | AS-B882-239 | AS-B984-100 | AS-B885-100 |
| $0_{0}^{0}$ | $\begin{aligned} & \text { AS-B875-001 } \\ & \text { AS-B875-002 } \end{aligned}$ | $\begin{aligned} & \text { AS-B875-101 } \\ & \text { AS-B875-102 } \end{aligned}$ | AS-B880-108 | AS-B880-208 | AS-B882-032 |
|  | AS-B863-032 | AS-B881-508 | AS-B881-408 | AS-B863-132 | AS-B875-114 |
|  |  |  |  |  |  |
| $\mathrm{O}^{0}$ |  |  |  |  |  |

NOTE: Indicates Keying pin locations.
NOTE: * Indicates these modules may be obsoleted or superseded. Please contact your local distributor for more details.

## Quick Start Test—Modicon Quantum 800 Series I/O Modules with Unity

## Running Quick Start Test

The following table provides the steps for running a Quick Start Test:

| Step | Action |
| :--- | :--- |
| 1 | Determine which channel and slot location are being used for this module. |
| 2 | Wire a field device to the appropriate terminals (refer to the individual wiring diagrams/ <br> field connector drawings for that particular I/O module) on either the AS-8534-000 low <br> density connector, or AS-8535-000 high density connector, (refer to the Specification <br> section for your particular I/O module to determine which connector is required.) |
| 3 | Stop the controller. |
| 4 | Install the I/O module. |
| 5 | I/O Map the module, at the desired discrete or register reference. |
| 6 | Start the controller. |
| 7 | Confirm that the modules active light is illuminated. (may require Step 8 wiring first). |
| 8 | To turn an Input ON apply the required power to the appropriate terminals (refer to <br> the individual wiring diagrams/field connector drawings for your particular I/O <br> module), and confirm that the red I/O light is illuminated after turning I/O point ON. |

## Analog Module Specifications-Modicon Quantum 800 Series I/O Modules with Unity

Environmental Specifications for the 800 Series I/O analog modules.

| Operating | Temperature | 0 to $60{ }^{\circ} \mathrm{C}\left(32\right.$ to $\left.140{ }^{\circ} \mathrm{F}\right)$ |
| :---: | :---: | :---: |
|  | Humidity | 0 to $95 \%$ (noncondensing) at $60^{\circ} \mathrm{C}$ |
| Storage | Temperature | -40 to $85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.185^{\circ} \mathrm{F}\right)$ |
|  | Humidity | 0 to 95\% (noncondensing) at $60^{\circ} \mathrm{C}$ |
| Isolation | Field to System | 2000 VAC steady state maximum at 60 Hz for one minute |
|  | Between Groups | 2500 VDC for 60 seconds without breakdown Leakage current shall not exceed 1.5 mA |
| Shock | Operating | +/-15 G peak, 11 ms , half-sine wave |
|  | Nonoperating | +/-15 G peak, 11 ms , half-sine wave |
| Vibration | Operating | 0.005" D.A. <br> Sine from 10 to crossover frequency ( 57 to 62 Hz ) 1.0 G from crossover frequency to 500 Hz |
|  | Nonoperating | $0.029 \mathrm{G} \mathrm{sq} / \mathrm{Hz}, 10-50 \mathrm{~Hz}$ rolloff at -8db/octive from 50 Hz to 500 Hz |
| EMI | Per MIL-STD 461B. |  |
| RFI | Per FCC Class A. |  |
| Surge Withstand Capability | Per IEEE 472-1974 and ANSI C37.90A-1974 |  |

## Mechanical

Specifications for the 800 Series I/O analog modules.

| Dimensions <br> $(W \times H \times D)$ | $2.0 \times 10.5 \times 8.0 \mathrm{in}$. <br> $(50.8 \times 266.7 \times 203.2 \mathrm{~mm})$. |
| :--- | :--- |
| Weight | $2.4 \mathrm{lbs} .(1.1 \mathrm{~kg})$. |
| Space Required | $1 \mathrm{I} / \mathrm{O}$ slot. |

See individual chapters for module specific Specifications.

## Discrete Module Specifications-Modicon Quantum 800 Series I/O Modules with Unity

Environmental Specifications for the 800 Series I/O discrete modules.

| Operating | Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| :--- | :--- | :--- |
|  | Humidity | 0 to $95 \%$ (noncondensing) at $60^{\circ} \mathrm{C}$ |
| Storage | Temperature | -40 to $85^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
|  | Humidity | 0 to $95 \%$ (noncondensing) at $60^{\circ} \mathrm{C}$ |
| Isolation | Field to System | 2000 VAC steady state maximum at 60 Hz for 1 min. |
|  | Between Groups | 2500 VDC for 60 s without breakdown. Leakage <br> current shall not exceed 1.5 mA. |
|  | Operating <br>  | Nonoperating |$\quad$| 15 G peak, 11 ms , half sine wave |
| :--- |

Mechanical Specifications for the 800 Series I/O discrete modules.

| Dimensions <br> $(W \times H \times D)$ | $2.0 \times 10.5 \times 8.0 \mathrm{in}$. <br> $(50.8 \times 266.7 \times 203.2 \mathrm{~mm})$. |
| :--- | :--- |
| Weight | $2.4 \mathrm{lbs} .(1.1 \mathrm{~kg})$. |
| Space Required | $1 \mathrm{I} / \mathrm{O}$ slot |

## 800 Series RIO Modules

## Introduction

At a Glance $\quad \begin{aligned} & \text { This part provides an overview of the } 800 \text { Series RIO modules. The content } \\ & \text { describes the modules' features. }\end{aligned}$

What's in this Part?

This part contains the following chapters:

| Chapter | Chapter Name | Page |
| :---: | :--- | :--- |
| 4 | J890 \& J892 RIO Interface Modules | 55 |
| 5 | P890 \& P892 RIO Processors | 75 |
| 6 | ASP890300 RIO Processor | 87 |

## J890 \& J892 RIO

Interface Modules

## 4

## At a Glance

$\begin{array}{ll}\text { Purpose } & \begin{array}{l}\text { This chapter explains features and operation of the J890 \& J892 RIO Interface } \\ \text { Modules. }\end{array}\end{array}$

What's in this Chapter?

This chapter contains the following topics:

| Topic | Page |
| :--- | :--- |
| J890 \& J892 Overview | 56 |
| J890 \& J892 DIP Switch Settings for the Drop Address | 57 |
| J892 DIP Switch Settings for ASCII Devices | 60 |
| J890 \& J892 Indications | 63 |
| J890 \& J892 Installation and Connection | 66 |
| J890 \& J892 Connectivity on an S908 RIO Network | 69 |
| J890 \& J892 RIO Interface Error Codes | 71 |
| J892 ASCII Error Codes | 72 |
| J890 \& J892 Specifications | 73 |

## J890 \& J892 Overview

Module Features A J890 or J892 module may be used to provide the drop interface between a 984 Programmable Controller and a remote drop of 800 Series I/O on an S908 Remote I/O (RIO) network. Both interface modules are available in two models - one with a single F connector for RIO cable connection and one with two F connectors. In addition, the J892 contains two half-duplex ports that will support ASCII input/output devices at the remote drop.

Module Table J89x Modules

| Part number | RIO cable <br> ports | ASCII ports |
| :--- | :--- | :--- |
| AS-J890-101 | 1 | 0 |
| AS-J890-102 | 2 | 0 |
| AS-J892-101 | 1 | 2 |
| AS-J892-102 | 2 | 2 |

## J890 \& J892 DIP Switch Settings for the Drop Address

## DIP Switch Location

## Interface Rear

 ViewThis J890/J892 Interface devices both have a set of DIP switches located on the back of the module. These switches are used to set a unique RIO network address for the remote drop where the interface will reside. The drop address must be set on the Interface module before it is installed in the I/O housing.

Rear view of J890 \& J892 interface.


## Switch Settings for Drop Address

The drop address DIP switch has eight positions

Note: If the Unity controller at the head end of the RIO network supports both a local I/O drop and remote I/O, then drop address \# 1 is reserved for the local drop and the first remote drop is addressed as drop \# 2. If the Unity controller does not support local I/O, the first remote drop is addressed as drop \# 1. For a complete list of 984 controllers and their I/O support capabilities, refer to the Modicon Remote I/ O System Planning and Installation Guide (890 USE 101 00).

Switch positions for drop addressing.


Switch assignment for drop addressing

| Switches | Functions |
| :--- | :--- |
| Positions 1... 5 | Drop address 1-32 <br> set in the 1 direction (to the left) |
| Positions 6 ... 8 | not used <br> set in the 0 direction (to the right) |

Mapping Dip Switch Settings for Drop Address

Dip switch settings for the drop address

|  | Switches |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 |
| Drop Address |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 1 | 0 | 0 | 0 |
| 4 | 1 | 1 | 0 | 0 | 0 |
| 5 | 0 | 0 | 1 | 0 | 0 |
| 6 | 1 | 0 | 1 | 0 | 0 |
| 7 | 0 | 1 | 1 | 0 | 0 |
| 8 | 1 | 1 | 1 | 0 | 0 |
| 9 | 0 | 0 | 0 | 1 | 0 |
| 10 | 1 | 0 | 0 | 1 | 0 |
| 11 | 0 | 1 | 0 | 1 | 0 |
| 12 | 1 | 1 | 0 | 1 | 0 |
| 13 | 0 | 0 | 1 | 1 | 0 |
| 14 | 1 | 0 | 1 | 1 | 0 |
| 15 | 0 | 1 | 1 | 1 | 0 |
| 16 | 1 | 1 | 1 | 1 | 0 |
| 17 | 0 | 0 | 0 | 0 | 1 |
| 18 | 1 | 0 | 0 | 0 | 1 |
| 19 | 0 | 1 | 0 | 0 | 1 |
| 20 | 1 | 1 | 0 | 0 | 1 |
| 21 | 0 | 0 | 1 | 0 | 1 |
| 22 | 1 | 0 | 1 | 0 | 1 |
| 23 | 0 | 1 | 1 | 0 | 1 |
| 24 | 1 | 1 | 1 | 0 | 1 |
| 25 | 0 | 0 | 0 | 1 | 1 |
| 26 | 1 | 0 | 0 | 1 | 1 |
| 27 | 0 | 1 | 0 | 1 | 1 |
| 28 | 1 | 1 | 0 | 1 | 1 |
| 29 | 0 | 0 | 1 | 1 | 1 |
| 30 | 1 | 0 | 1 | 1 | 1 |
| 31 | 0 | 1 | 1 | 1 | 1 |
| 32 | 1 | 1 | 1 | 1 | 1 |

## J892 DIP Switch Settings for ASCII Devices

## DIP Switch

 LocationInterface Rear View

J892 Interface devices have an additional set of DIP switches located at the back of the module for setting ASCI device addresses and ASCII communication parameters. If you want to support ASCII devices at this drop, the ASCII switch setting must be made before the module is installed in the I/O housing.

Rear view of J892 interface.


## Switch Settings The drop address DIP switch has eight positions.

Switch positions for ASCII device settings.


Switches 3 ... 6 are used to set ASCII device addresses on the RIO network. The remaining switches are used to specify ASCII communication parameters.

Switch Settings for ASCII Communication

Switch settings for ASCII communication

| Switches | ASCII Communication Function |
| :--- | :--- |
| 1 | RS-232C handshaking for the bottom ASCII port <br> $1=$ Data terminal ready/hardware handshake <br> $0=$ XON/XOFF |
| 2 | RS-232C handshaking for the top ASCII port <br> $1=$ <br> $0=$ Data terminal ready |
| $3 \ldots 6$ | Port address 1 - 32 <br> Device addressing in pairs |
| 7 | Continuous confidence test mode* <br> $1=$ <br> $0=$ Local diagnostic (J892 will not communicate when set to 1 position (left)) |
| 8 | Not used, always set in the 0 position (right) |

Mapping Switch Settings for ASCII Device Addresses

Switch settings for ASCII device addresses

|  | Switches |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| ASCII ports address |  |  |  |  |
| 1,2 | 0 | 0 | 0 | 0 |
| 3,4 | 1 | 0 | 0 | 0 |
| 5,6 | 0 | 1 | 0 | 0 |
| 7,8 | 1 | 1 | 0 | 0 |
| 9,10 | 0 | 0 | 1 | 0 |
| 11,12 | 1 | 0 | 1 | 0 |
| 13,14 | 0 | 1 | 1 | 0 |
| 15,16 | 1 | 1 | 1 | 0 |
| 17,18 | 0 | 0 | 0 | 1 |
| 19,20 | 1 | 0 | 0 | 1 |
| 21,22 | 0 | 1 | 0 | 1 |
| 23,24 | 1 | 1 | 0 | 1 |
| 25,26 | 0 | 0 | 1 | 1 |
| 27,28 | 1 | 0 | 1 | 1 |
| 29,30 | 0 | 1 | 1 | 1 |
| 31,32 | 1 | 1 | 1 | 1 |

## J890 \& J892 Indications

## Overview

On the face of both the J890 and J892 RIO Interface modules are a set of LEDs that indicate the RIO processing status of the module and one or two BNC cable ports used to connect the drop to the RIO network.

J890 Front View AS-J890 Front View


The J892 has additional LEDs that indicate the ASCII device processing status at the drop and a pair of $25-$ pin, $D$-shell, female ports for connecting ASCII devices at the drop.

Note: The LED indicators on the front panels also provide diagnostic information.Various flash patterns indicate errors detected in the RIO interface and/or in the ASCII interface.

J892 Front View


J890 and J892

## LED Status

Indications for RIO Interface

J890 and J892 LED Status Indications for RIO Interface.

| Name | Color | Indication (when ON) |
| :--- | :--- | :--- |
| READY | Green | RIO interface board succesfully passed power-up test |
| COMM ACTIVE | Green | I/O data being received or sent |
| COMM ERROR | Red | Communications error between J890 / J892 and 984 |
| OURBUS ERROR | Red | Detected communications error between J890 / J892 and I/O |
| CARRIER DETECT | Green | Processor sensed carrier signal |

Note: The COMM ERROR LED for the RIO Interface is ON if only one port on a dual port interface is connected, indicating that no signals are present at the unconnected port. Communications with the 984 are not effected.

J892 LED Status Indications for ASCII Interface

J892 LED Status Indications for ASCII Interface

| Name | Color | Indication (when ON) |
| :--- | :--- | :--- |
| READY | Green | ASCII board succesfully passed power-up test |
| COMM ACTIVE | Green | ASCII data being received or sent |
| COMM ERROR | Red | Detected communications error between J892 and ASCII <br> device |
| INTERFACE ERROR | Red | Detected ASCII communications error in the J892 |

Note: The COMM ERROR LED for the RIO Interface is ON if only one port on a dual port interface is connected, indicating that no signals are present at the unconnected port. Communications with the 984 are not effected.

## J890 \& J892 Installation and Connection

Introduction

Installing the J890/J892 Module

After the appropriate switch settings have been made, follow these steps to install the J890/J892 Interface module in a primary (AS-H819-103 or AS-H827-103, AS-H827-107) 800 Series I/O Housing. The module is 1.5 slots wide.

The following table lists the steps for installing the J890/J892 Module:

| Step | Action |
| :---: | :---: |
| 1 | Turn off the power to the I/O housing. |
| 2 | If you are installing a J892, make sure that SW7 on the ASCII communications DIP switch pack is set to the 0 position (on-line). |
| 3 | Insert the Interface module in slots 2 and 3 of the primary housing (directly to the right of the power supply unit). Press the module firmly to ensure that it is seated properly. Position of a J890 interface module in a primary I/O housing. |
| 4 | Tighten the two captive screws located at the top and bottom of the interface module. |

Connecting the J890/J892 to a Drop Cable


3 If you are installing a J892 for ASCII device support, connect the ASCII device cables to the ASCII ports at this time.

4 Apply power to the I/O housing. The I/O drop is ready for checkout; refer to Appendix B for diagnostic messages provided by the LEDs on the J890/J892 front panels.
Note: For a complete discussion of planning and installing an RIO drop, refer to the Modicon Remote I/O System Planning Guide (GM-0984-RIO).

## J890 \& J892 Connectivity on an S908 RIO Network

| User | Any 984 Programmable Controller that supports the S908 RIO network can employ |
| :--- | :--- |
| Connections | $800 \_$Series I/O at any or all of its remote drops, and any remote drop of |
| $800 \_$Series I/O can use a J890 or J892 as the drop interface module. |  |
| The J890/J892 Interface modules are compatible with all 800 Series I/O modules |  |
| used in a S908 RIO network and may support up to 1024 input and 1024 output bits |  |
| in a drop (depending on the capability of the head-end controller). |  |
| A J890/J892 Interface is a 1.5 slot module designed to be installed in the two slots |  |
| immediately to the right of the primary power supply in the primary housing of a drop. |  |
| The Interface sends data to and receives data from the 800 Series I/O via the drop's |  |
| backplane; it communicates with the RIO processing unit in the controller via the |  |
| RIO cable system. |  |
| In addition to managing the I/O data flow within the drop and over the RIO network, |  |
| a J890/J892 is also used to define the address of the drop on the RIO network. Each |  |
| module is equipped with a set of DIP switches with which you can set a unique drop |  |
| address. The J982 also provides a second set of DIP switches for specifying ASCII |  |
| device addresses. The locations of the switch packs and their addressing scheme |  |
| are defined in P890 \& P892 Switch Settings for the Drop Address, p. 80 and J892 |  |
| DIP Switch Settings for ASCII Devices, p. 60 . |  |

J890/J892 Drop and Network Communications


## J890 \& J892 RIO Interface Error Codes

Introduction

## Error Codes

When power is applied to the I/O housing after the J890/J892 Interface module has been installed in the drop, the module performs a set of confidence tests on itself. If any faults are detected in the RIO processing portion of the module, the RIO LEDs on the front panel will display a flash pattern of error codes.

J890/J892 I/O processor board test error codes

| Failed <br> Diagnostic | READY | COMM ACTIVE | COM ERROR | INTERFACE ERROR |
| :--- | :--- | :--- | :--- | :--- |
| Machine Dead | OFF | OFF | OFF | OFF |
| PROM Test | OFF | Flashing | OFF | OFF |
| RAM Test | OFF | OFF | Flashing | OFF |
| LAN Test | OFF | Flashing | Flashing | OFF |
| CPU Test | OFF | OFF | OFF | Flashing |
| OBM Test | OFF | Flashing | OFF | Flashing |
| Switch Test | OFF | OFF | Flashing | Flashing |

The interface error (OBM) test may be caused by an I/O module that has shorted the I/O bus. All of the other diagnostic error codes indicate an internal failure in the remote I/O processing portion of the J890/J892 interface.

## J892 ASCII Error Codes

Introduction Confidence tests can also be run on the J892 module to test the ASCII portion of the device. To establish the ASCII confidence test mode on the J892 board, set SW7 to 1 (to the left) on the eight-position DIP switch. This will run the loop test.

## Error Codes

J892 ASCII board test error codes

| Failed Diagnostic | READY | COMM <br> ACTIVE | COM <br> ERROR | INTERFACE <br> ERROR |
| :--- | :--- | :--- | :--- | :--- |
| Machine Dead | OFF | OFF | OFF | OFF |
| PROM Test | Flashing | OFF | OFF | OFF |
| RAM Test | OFF | Flashing | OFF | OFF |
| HDLC Digital | Flashing | Flashing | OFF | OFF |
| HDLC Analog | OFF | OFF | Flashing | OFF |
| Serial Port Low | Flashing | OFF | Flashing | OFF |
| Interrupt Low | OFF | Flashing | Flashing | OFF |
| Serial Port High | Flashing | Flashing | Flashing | OFF |
| Interrupt High | OFF | OFF | OFF | Flashing |
| Baud Rate Low | Flashing | OFF | OFF | Flashing |
| Baud Rate High | OFF | Flashing | OFF | Flashing |
| Switch Test | Flashing | Flashing | OFF | Flashing |
| Modem Disconnect | OFF | OFF | Flashing | Flashing |
| Modem DSR Error | Flashing | OFF | Flashing | Flashing |

With the exception of the switch test, these diagnostic error codes indicate an internal failure in the ASCII processing portion of the J892 interface.

## J890 \& J892 Specifications

Introduction The following tables give specifications for the J890 \& J892 modules.

## Costumer Part

 NumbersCostumer part numbers

| Customer Part <br> Number | Description |
| :--- | :--- |
| AS-J890_101 | Contains one F connector RIO cable port, <br> Supports linear and dual RIO cable topologies, <br> No ASCII device support |
| AS-J890_102 | Contains two F connector RIO cable ports, <br> Supports a redundant RIO cable topology, <br> No ASCII device support |
| AS-J892_101 | Contains one F connector RIO cable port, <br> Supports linear and dual RIO cable topologies, <br> Two 25-pin female connectors for ASCII device support |
| AS-J892_102 | Contains two F connector RIO cable ports, <br> Supports a redundant RIO cable topology, <br> Two 25-pin female connectors for ASCII device support |

## Communications Communications

| Rate | $1.544 \mathrm{Mbits} / \mathrm{s}$ |
| :--- | :--- |
| Comm Link Time | $<1 \mathrm{~ms}$ for $256 \mathrm{I} / \mathrm{O}$ points |
| Drop Hold-Up Time | programmable from 0.3 s to 100 minimum ( 100 ms increments) |

System Power Requirements

| J890 Load | 1.85 A at +5 V |
| :--- | :--- |
| J892 Load | 4.0 A at +5 V |

## P890 \& P892 RIO Processors

## 5

## At a Glance

| Purpose | This chapter explains features and operation of the P890 \& P892 RIO Processors. |  |
| :--- | :--- | :--- |
| What's in this <br> Chapter? | This chapter contains the following topics: | Page |
| Topic | P890 \& P892 Overview | P890 \& P892 Indicators |
| P890 \& P892 Power Available | 76 |  |
| P890 \& P892 Switch Settings for the Drop Address | 78 |  |
| P890 \& P892 Installation | 79 |  |
| P890 \& P892 Specifications | 80 |  |

## P890 \& P892 Overview

General Description

The P890/P892 Remote I/O Processors provide a direct interface between 984 PC and 800 Series I/O. Both modules include an integrated power supply that supplies 3 amps of power to adjacent 800 series I/O modules. In addition, the P892 processor provides two half duplex ASCII ports.
The P890/P892 processor is mounted directly into a primary 19- or 27 -inch 800 Series I/O housing (H819/H827-209). The connection between the processor and the I/O modules is made through the housing backplane. The remote I/O system coaxial cabling provides the communications path between the P890/P892 processor and the RIO Head.
The P890/P892 processors are compatible with all Unity programmable controllers that support the S908 remote I/O system. The P890/P892 processors are compatible with all 800 Series I/O modules: discrete, analog, register and intelligent. The actual number of remote I/O drops and I/O points per drop supported depends on the controller size.
The P890/P892 processors support a single remote I/O cable configuration. Cable runs from the 984 Controller through taps that have drop cables to the P89X remote interfaces.
The P890/P892 processor power supply supports two separate power sources, 115/ 230 VAC and 24 VDC . The AC power source is switch selectable between 115 v and 230 v settings. The top ON/OFF switch controls the AC power and the bottom ON/ OFF switch controls the 24VDC source. Either source can be used to power the P890/P892. The 24VDC can be used as a backup power source to the 115/230VAC. The single slot P890/P892 can provide a maximum of 3 amps to power 800 series I/O modules. For systems needing more power, expander power supplies should be inserted in the next I/O housing.

Front, Bottom and Side View


## P890 \& P892 Indicators

| Overview | The following table shows P890/P892 processor indicator lights and provides the name, color and indication when on. The I/O processor lights are on both processors. The ASCII error indicator is only on the P892 Processor. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Indicator Lights for P890 and P892 | Indicator lights for I/O processor P890 and P892. |  |  |  |
|  | Name |  | Color | Indication (when ON) |
|  | Power OK |  | Green | All Voltages are OK. |
|  | Ready |  | Amber | I/O processor board successfully passed power-up tests. |
|  | Comm Active |  | Green | I/O comm active between P89X and 984. |
|  | Comm Error |  | Red | A communications error has been detected between the processor and the controller. |
|  | Ourbus Error |  | Red | A communications error has been detected between the processor and the $\mathrm{I} / \mathrm{O}$ modules. |
| Indicator Light ASCII (P892 only) | ASCII error indicator light |  |  |  |
|  | Name | Color | Indic | tion (when ON) |
|  | ASCII <br> Error | Red | An A | ClI communications error has been detected at the processor. |

The following table shows P890/P892 processor indicator lights and provides the name, color and indication when on. The I/O processor lights are on both processors. The ASCII error indicator is only on the P892 Processor.
ndicator lights for I/O processor P890 and P892.

## Indicator Light ASCII (P892 only)

## P890 \& P892 Power Available

## Overview

Power supplied for I/O use
+5 VIO @ 3Amp max* +4.3V @ 3Amp max*
-5V @ .25Amp

* The +5 VIO and +4.3 V combined total load current should not exceed 3 Amps. The P890/P892 processors provide a fast drop scan rate, less than 5 milliseconds for 256 I/O points. The communication link time to the RIO Head is less than 1 millisecond with up to five immediate retries.


## Typical <br> Configuration

In Unity
Controller




H827-209

## P890 \& P892 Switch Settings for the Drop Address

Overview Before installing the P890 or P892 processor, you must set the switches located on the bottom of the unit. The P890/P892 processor has one set of eight switches used to select drop/port address and ASCII communications handshake method.

P890/P892 Drop Address Switch Settings

View of the Switches


Description of the Switches

| Switches | Functions |
| :--- | :--- |
| For P890 \&P892 <br> $1-6$ | drop/port address 1-32 binary form |
| For P890 ONLY | not used, set to left |
| $7-8$ |  |$\quad$| For P892 ONLY |
| :--- |
| 7 |
| 8 |$\quad$| hand shaking for port 1 |
| :--- |
| hand shaking for port 2 |
| L Data Terminal Ready/Data Set Ready |
| R = Xon/Xoff |$\quad$|  |
| :--- |

Note: You MUST go into the Traffic Cop software and set the ASCII port number to match your switch selection, noting the drop.

Note: Drop and port addresses are related. Switch settings for Drop \#3 correspond to ASCII ports 5 and 6.

Drop Address Switch Settings

The drop address is set by the setting switches one through six in the switchpack as shown in the table.

| Switches |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 |  |  |
|  |  |  |  |  |  | Drop Address | Port Number For P892 ONLY |
| L | L | L | L | L | L | 1 | 1,2 |
| R | L | L | L | L | L | 2 | 3,4 |
| L | R | L | L | L | L | 3 | 5,6 |
| R | R | L | L | L | L | 4 | 7,8 |
| L | L | R | L | L | L | 5 | 9,10 |
| R | L | R | L | L | L | 6 | 11,12 |
| L | R | R | L | L | L | 7 | 13,14 |
| R | R | R | L | L | L | 8 | 15,16 |
| L | L | L | R | L | L | 9 | 17,18 |
| R | L | L | R | L | L | 10 | 19,20 |
| L | R | L | R | L | L | 11 | 21,22 |
| R | R | L | R | L | L | 12 | 23,24 |
| L | L | R | R | L | L | 13 | 25,26 |
| R | L | R | R | L | L | 14 | 27,28 |
| L | R | R | R | L | L | 15 | 29,30 |
| R | R | R | R | L | L | 16 | 31,32 |
| L | L | L | L | R | L | 17 | N/A |
| R | L | L | L | R | L | 18 | N/A |
| L | R | L | L | R | L | 19 | N/A |
| R | R | L | L | R | L | 20 | N/A |
| L | L | R | L | R | L | 21 | N/A |
| R | L | R | L | R | L | 22 | N/A |
| L | R | R | L | R | L | 23 | N/A |
| R | R | R | L | R | L | 24 | N/A |
| L | L | L | R | R | L | 25 | N/A |
| R | L | L | R | R | L | 26 | N/A |
| L | R | L | R | R | L | 27 | N/A |
| R | R | L | R | R | L | 28 | N/A |
| L | L | R | R | R | L | 29 | N/A |
| R | L | R | R | R | L | 30 | N/A |
| L | R | R | R | R | L | 31 | N/A |


| Switches |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |  |  |
|  |  |  |  |  |  | Drop Address | Port Number <br> For P892 ONLY |
| R | R | R | R | R | L | 32 | N/A |

Note: Drop addresses 1 to 16 can be used as RIO and ASCII. However, drop addresses 17 to 32 can ONLY be used as RIO.

9-Pin ASCII Ports Correct cable configuration is dependent upon the requirements of the unit attached to the ascii port.

| Pin Number | Designation |
| :--- | :--- |
| 1 | Chassis Ground (CG) |
| 2 | Receive (RXD) |
| 3 | Transmit (TXD) |
| 4 | Data Terminal Ready (DTR) |
| 5 | Signal Ground (SG) |
| 6 | Data Set Ready (DSR) |
| 7 | Request to Send (RTS) |
| 8 | Clear to Send (CTS) |
| 9 | No Connection (N.C.) |

Sample Pin Layout for a
9-Pin ASCII Port

The following graphic depicts one possible pin layout for a cable connecting a P892 ASCII port and another device using hardwired flow control. Actual pin numbers may vary from device to device.
$\begin{array}{cc}\text { ASCII PORT (9-PIN) } & \text { REMOTE DEVICE (25-PIN) } \\ \text { (DTR/DSR) } & \text { (DTR/DSR) }\end{array}$


## P890 \& P892 Installation

## Introduction The following procedure describes how to install a P890 or P892 processor. The processor is installed in an H819/H827-209 800 Series I/O Housing in the left-most slot.

Note: To ensure proper operation of this module, you must have one of the following revisions (or higher) of MODICON Traffic Cop software: P190 AS-T984-302 Version 2.01 Rev.J
IBM AS-DIBM-902 Version 3.01 Rev.X
If you do not have a tape or diskette with one of the above software levels, call MODICON Customer Service at 1-800-468-5342 and obtain the proper software.

## Procedure for Installation

How to Install a P890 or P892 processor

| Step | Action |
| :--- | :--- |
| 1 | Set the address/handshake switch as shown in P890/P892 Drop Address Switch <br> Settings, $p .80$ |
| 2 | Ensure that the power supply switches are OFF and power to the housing is OFF. <br> Also, set the 115/230 VAC switch based upon your power requirement. Do not insert <br> the P890 or P892 processor if power is supplied to the unit. |
| 3 | Remove the plastic cover to connect the power cables, once they are in place replace <br> the plastic cover. |
| 4 | Wire up the power cable for either AC (three pin plug) or DC (two pin plug) depending <br> upon the application. |
| 5 | Connect remote I/O cable to the P890 or P892 F-connector. |
| 6 | Remove the ASCII port connector covers. Connect the ASCII device cable(s). For the <br> P892 only. |
| 7 | Insert the P890/P892 into the H819/H827-209 housing in the left-most slot. Press <br> firmly to ensure that the processor is seated properly in the housing. |
| 8 | Tighten the two captive screws located at the top and bottom of the processor. |
| 9 | Turn the power supply on. The I/O drop is ready for checkout. |

## P890 \& P892 Specifications



Static Discharge
15 kv to all exterior surfaces, connectors covered or terminated properly, mounted on grounded panel.

## Environmental Environmental Operating Conditions

 Operating Conditions| Humidity | $0-95 \%$ non-condensing |
| :--- | :--- |
| Temperature | $0-60^{\circ} \mathrm{C}$ |
| Temperature Storage | $-40 /+80$ degrees C |
| Shock | $+/-10 \mathrm{G}$ 's, 11 ms .3 3pulses per axis |
| Vibration Sine | 5 Hz to $50 \mathrm{~Hz} @ .0005$ in D.A. 30min/axis <br> 50 Hz to $500 \mathrm{~Hz} @ .625 \mathrm{G}^{2} 30 \mathrm{~min} /$ axis |
| Vibration Random | 10 Hz to $50 \mathrm{~Hz} @ .029 \mathrm{G}^{2} / \mathrm{HZ}$ <br> 60 Hz to $300 \mathrm{~Hz} @ .029 \mathrm{G}^{2}-8 \mathrm{db} /$ octave |
| Altitude | $10,000 \mathrm{ft} \mathrm{max}$ |

Physical

| Dimensions | $3.53 . \mathrm{in} \times 10.46 \mathrm{in} . \times 8.25 \mathrm{in}$. <br> $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})$ |
| :--- | :--- |
| Diagnostics | Power-up confidence tests <br> Run time confidence tests |

## ASP890300 RIO Processor

## 6

## At a Glance

Purpose This chapter explains the features and operation of the ASP890300 RIO Processor
What's in this Chapter?

This chapter contains the following topics:

| Topic | Page |
| :--- | :--- |
| ASP890300 General Description | 88 |
| Indicators | 91 |
| Power, Backplanes, I/O and Typical Configuration | 92 |
| Switch Settings | 95 |
| Diagnostics | 99 |
| Installation | 102 |
| Specifications | 104 |

## ASP890300 General Description

| Overview | The MODICON ASP890300 800 I/O Remote I/O processor with Power provides an interface between PLCs and 800 Series Remote I/O modules. Two half-duplex ASCII ports are available. <br> The basic modes of operation are P890/P892/J890 replication (AS-P89X-000 and AS-J890-X0X) and J892 emulation (AS-J892-X0X). <br> The ASP890300 Processor is compatible with all Schneider Electric controllers that support the S908/CRP-type Remote I/O networks and all 800 Series I/O modules. Remote I/O communication is accomplished over single or dual coaxial cable networks. The number of drops and points supported depends on the system PLC. Operating modes are rotary switch-selectable, and include single or dual RI/O cable. These, in part, eliminate improper Comm Error LED indications when operating with a single cable connecting the drop. <br> Rotary switch selectable operating modes, plus two executive reflash options are: <br> - J890/P890 single or dual RI/O cable operation <br> - J892 and P892 single or dual RI/O cable operation <br> - RTU or ASCII reflash modes <br> Executive software stored in flash memory may be updated through ASCII Port 1. |
| :---: | :---: |
| ASP890300 Compatibility | Those replacing the P89X processors will find the ASP890300 both power and backplane compatible. Some connector rewiring will be required. J890 or J892 processor replacement will require a backplane replacement. Depending on the number of I/O modules in the drop, a replacement may also include an additional power supply and rewiring. |

Note: Equipment replacement guidelines, including those for J810/J812 and 984 slot-mount controllers are described in Appendix A. Please review this material before performing an upgrade.

The ASP890300 Processor is mounted into primary 10-, 19- or 27 -inch 800 Series I/O backplanes. These provide connectivity between the processor and I/O modules.


#### Abstract

Power The processor is self-powered from either 115/230VAC or 24VDC sources. These power sources are independently switched ON/OFF on the front panel. The 115V/ 230VAC inputs are jumper-selectable on the power connector. Up to 7 A of combined +5.0 VDC and +4.3 VDC load current is supplied by the processor to I/O in the primary backplane. No other power supplies may be used to augment the ASP890300. Power for I/O modules in secondary backplanes can be provided by auxiliary supplies interconnected with appropriate cables.


Front, Bottom, and Left Side View

The ASP890300 is depicted below.



The ASP890300 is shipped with the above label temporarily attached to the 5 -pin power connector.


Right Side View The label is on the lower, right side. The label is upside-down. and Label


## Indicators

## LED Indicators The following table describes the LED Indicators.

| LED Nomenclature | Color | Function/Indication |
| :--- | :--- | :--- |
| PWR OK | Green | Power voltages are good and within specified specifications. |
| READY | Green | All internal diagnostics have completed successfully and the <br> unit is available for normal operation. |
| COMM ACTIVE | Green | Unit is successfully and actively communicating on the <br> remote I/O network. |
| COMM ERROR A | Red | Cable A is experiencing communications errors due to any <br> of the following: <br> - broken cable <br> - poor or loose coaxial connection <br> - intermittent noise <br> - mode selector switch is in wrong position |
| COMM ERROR B | Red | Cable B is experiencing communications errors due to any <br> of the following: <br> - broken or missing cable <br> $\bullet$ <br> poor or loose coaxial connection <br> - intermittent noise <br> - mode selector switch is in wrong position |
| ASCII ACTIVE | Green | ASCII port is active. |
| ASCII ERROR | Red | Unit is experiencing errors with ASCII communication port. |
| OURBUS ERROR | Red | Unit is experiencing errors with a local I/O module, or: <br> - the entry in the traffic cop does not match the I/O module <br> type; <br> the I/O module is not present; or <br> - the I/O module is no longer operative. |

## Power, Backplanes, I/O and Typical Configuration

Power Supplied The following table describes the power supplied for I/O use. The combination of the for I/O +5 V and +4.3 V loads shall not exceed 7.0 A

| Voltage | Current |
| :--- | :--- |
| +5.0 VDC | 7.0 A |
| +4.3 VDC | 6.0 A |
| -5.0 VDC | 0.5 A |

AC Power Input Connections

The following table describes the ASP890300 AC power connector.

| Terminal | Nomenclature | Function |  |
| :--- | :--- | :--- | :---: |
| 1 | N | Neutral AC Line |  |
| 2 | L | Hot AC Line |  |
| 3 | G | Ground |  |
| 4 | Jumper inserted between 4 and 5 for 115 V operation |  |  |
| 5 |  |  |  |


|  | DANGER |
| :--- | :--- |
| HAZARDOUS VOLTAGE |  |
| - Disconnect all power before working on equipment. |  |
| $\bullet$ - Verify correct terminal connections when wiring. |  |
| Failure to follow this precaution will result in death, serious injury, |  |
| or equipment damage. |  |

DC Power Input The following table describes the ASP890300 DC power connector. Connections

| Terminal | Nomenclature | Function |
| :--- | :--- | :--- |
| 1 | DC+ | +24.0 VDC |
| 2 | DC- | Common |

Input Power Connectors Part Numbers

Compatible Backplanes

Typical Configuration

The following table lists part numbers for input power connectors.

| Input | Part Number |
| :--- | :--- |
| AC | $52-0378-000$ (5-terminal) |
| DC | $52-0380-000$ (2-terminal) |

Note: The ASP890300 is shipped with these connectors installed.

The following backplanes are compatible with the ASP890300.

| Name | Description |
| :--- | :--- |
| AS-H810-208* | $10^{\prime \prime}$, ASP890300 plus three I/O modules. |
| AS-H810-209* | $10^{\prime \prime}$, ASP890300 plus three I/O modules. |
| AS-H819-209 | $19^{\prime \prime}$, ASP890300 plus six I/O modules. |
| AS-H827-209 | $27^{\prime \prime}$, ASP890300 plus ten I/O modules. |
| *Repair/service exchange only |  |

Here is a typical ASP890300 configuration.


Remote I/O The following table describes ASP890300 remote I/O.

| Compatibility | All S908 Commands and Responses |
| :--- | :--- |
| Cable Medium | Coax, Single or Redundant Options |
| Termination | $75 \Omega$ Internal |
| Shield Grounding Method | Capacitor Coupled to Chassis Ground |
| Device Address | $1-32$ |

Drop I/O Capacity

The following table describes ASP890300 drop I/O capacity.

| Max Number of 800 Racks | 5 Max: 1 Primary, 4 Secondary |
| :--- | :--- |
| Max Number of Inputs | 1024 Points/64 Words |
| Max Number of Outputs | 1024 Points/64 Words |
| Max I/O | 2048 Points/128 Words |
| Drop Hold Up Time | 300 ms to 6553.6 seconds <br> 10 ms increments |
| Drop Scan Time | 5 ms for 256 I/O Points |

ASCII Port Capacity

The following table describes ASP890300 ASCII port capacity.

| Total Number ASCII Ports per Drop | 2 |
| :--- | :--- |
| Total Number ASCII Drops per System | 16 |
| Total Number ASCII Ports per System | 32 |

## Switch Settings

Switch Label

Mode Select Switch

The following graphic shows the switch label.


The following table describes the ASP890300 mode select switch.

| Rotary Switch <br> Position | Label <br> Nomenclature | Function |
| :--- | :--- | :--- |
| 0 | No Operation | Not Used |
| 1 | P/J 890/Single | P89x/J89x Single Cable/ASCII Disabled |
| 2 | P/J 890/Dual | P89x/J89x Dual Cable/ASCII Disabled |
| 3 | P892/Dual/ASCII | P892 Dual Cable/ASCII Enabled <br> Port Address Switch Disabled |
| 4 | J892/Single/ASCII | J892 Single Cable/ASCII Enabled <br> Port Address Switch Enabled |
| 5 | Upgrade Exec <br> FLASH RTU | J892 Dual Cable/ASCII Enabled <br> Port Address Switch Enabled |
| 6 | Flash Update via Port 1 using RTU Mode <br> parameters <br> Drop Functionally Disabled |  |
| 7 | FLASH ASCII | Flash Update via Port 1 using ASCII Mode <br> parameters <br> Drop Functionally Disabled |
| 8 | No Operation | Not Used |
| 9 |  |  |

- Switch settings read only on power up
- Invalid switch position setting will be indicated by flashing Comm Error A and Comm Error B LEDs

I/O Drop Address Switches

P892 (Mode 3/4) ASCII Port Addressing

The following table describes the ASP890300 drop address switches.

| Switch Type | Function | Numbered | Valid Setting |
| :--- | :--- | :--- | :--- |
| 10 Position Rotary | Ones | $0-9$ | $0-9$ |
| 10 Position Rotary | Tens | $0-9$ | $0-3$ |

- Switch settings read only on power up
- Drop address settings of 0 or greater than 32 are invalid addresses
- Invalid address setting will be indicated by flashing Comm Error A and Comm Error B LEDs

The following table describes the ASP890300's P892 (Mode 3/4) ASCII port addressing determined by the I/O drop address switches.

| Drop Address | ASCII Address | Drop Address | ASCII Address |
| :--- | :--- | :--- | :--- |
| 1 | 1,2 | 9 | 17,18 |
| 2 | 3,4 | 10 | 19,20 |
| 3 | 5,6 | 11 | 21,22 |
| 4 | 7,8 | 12 | 23,24 |
| 5 | 9,10 | 13 | 25,26 |
| 6 | 11,12 | 14 | 27,28 |
| 7 | 13,14 | 15 | 29,30 |
| 8 | 15,16 | 16 | 31,32 |

- Switch settings read only on power up
- ASCII port rotary address switches disabled in this mode
- ASCII port addresses are related to the drop address and are based upon this table
- Drops 17 through 32 can still be used for 800 I/O, but cannot have associated ASCII ports

J892 Port ASCII
Address Switches

The following table describes the ASP890300 ASCII port address switches.

| Switch Type | Function | Numbered | Valid Setting |
| :--- | :--- | :--- | :--- |
| 10 Position Rotary | Ones | $0-9$ | $0-9$ |
| 10 Position Rotary | Tens | $0-9$ | $0-3$ |

- Switch settings read only on power up
- Switch valid for Modes 5/6 only
- ASCII port address settings of 0 or greater than 31 are invalid addresses
- Invalid address setting will be indicated by flashing Comm Error A and Comm Error B LEDs

J892 (Mode 5/6) ASCII Port Addressing

The following table describes the ASP890300's J892 (Mode 5/6) ASCII port addressing determined by the J892 port ASCII address switches.

| Switch Setting | ASCII Port Address | Switch Setting | ASCII Address |
| :--- | :--- | :--- | :--- |
| 1 or 2 | 1,2 | 17 or 18 | 17,18 |
| 3 or 4 | 3,4 | 19 or 20 | 19,20 |
| 5 or 6 | 5,6 | 21 or 22 | 21,22 |
| 7 or 8 | 7,8 | 23 or 24 | 23,24 |
| 9 or 10 | 9,10 | 25 or 26 | 25,26 |
| 11 or 12 | 11,12 | 27 or 28 | 27,28 |
| 13 or 14 | 13,14 | 29 or 30 | 29,30 |
| 15 or 16 | 15,16 | 31 or 32 | 31,32 |

- Switch settings read only on power up
- ASCII port rotary address switches enabled in this mode
- ASCII port addresses of 0 and greater than 32 are invalid
- Invalid address setting will be indicated by flashing Comm Error A and Comm Error B LEDs

The following table describes the ASCII port handshake switch.

| 2 Position DIP Switch | Function |
| :--- | :--- |
| Port 1 | Data Terminal Ready |
|  | XON/XOFF |
| Port 2 | Data Terminal Ready |
|  | XON/XOFF |

- Switch settings read only on power up

ASCII Port
Interface Connector

The following table describes the ASCII port interface connector.

| Female 9 Pin <br> D-Type Pin Number | Signal Name | Description |
| :--- | :--- | :--- |
| 1 |  | Not Used |
| 2 | RXD | Receive Data |
| 3 | TXD | Transmit Data |
| 4 | DTR | Data Terminal Ready |
| 5 | SGND | Signal Ground |
| 6 | DSR | Data Set Ready |
| 7 | RTS | Request to Send |
| 8 | CTS | Clear to Send |
| 9 |  | Not Used |

## ASCII Port Parameters

ASCII Cable Distance

Sample Pin Layout

- D-sub shell tied to chassis ground.

The following table describes programmable ASCII port parameters.

| Port Address | $1-32$ |
| :--- | :--- |
| Baud Rate | $50,75,110,134,150,300,600,1200,1800,2000,2400,3600,4800,7200$, <br> 9600,19200 |
| Data Bits | $5,6,7,8$ |
| Parity | None, Odd, Even |
| Stop Bits | 1 or 2 |

The maximum cable distance is 50 feet ( 15 meters).

The following figure describes one possible pin layout for a cable connecting a ASP890300 ASCII port and another device using hardwired flow control. Actual pin numbers may vary between remote devices.

ASCII PORT (9-PIN)
(DTR/DSR)
REMOTE DEVICE (25-PIN)
(DTR/DSR)

## Diagnostics

## Overview

## Confidence Tests

The ASP890300 performs two classes of confidence tests, power-up tests and runtime tests. The power-up tests are designed to detect problems within the board hardware before lighting the ready LED and going on-line to receive and hand off data. The run-time tests attempt to catch board hardware problems while the ASP890300 is handling data and will force the unit to go off line if errors are detected. Errors always cause the ASP890300 to flash appropriate LEDs and to turn off the ready LED. The only way of returning to normal operation from a fatal error is to power cycle the unit.

The following table describes actions performed by ASP890300 confidence tests.

| Confidence Test | Action Performed |
| :--- | :--- |
| Flash Checksum | Performs a checksum of the executive flash |
| RAM Data Test | Verifies RAM data integrity |
| RAM Address Test | Verifies RAM address integrity |
| LAN Controller | Verifies LAN controller integrity |
| OBM Test | Verifies OURBUS integrity |

## Flashing LED Error Codes

The following table describes the ASP890300 flashing LED codes.

| Comm Active Flashes | Error Condition |
| :---: | :---: |
| 0 | Power Down Interrupt |
| 1 | Kernel Mode |
| 2 | Not Used |
| 3 | OBM Error |
| 4 | Bad/Unexpected Interrupt |
|  | LAN Chip Error |
|  | Receive Abort Error |
|  | Transmission Loop Time-out |
|  | Transmission DMA Time-out |
|  | Cable A Initialization Error |
|  | Cable A DMA Xfer Error |
|  | Cable B DMA Xfer Error |
|  | Cable A Dump Data Error |
|  | Cable A DMA Hung |
|  | Cable B DMA Hung |
|  | Cable A/B DRQ Hung |
|  | Power Up LAN Error |
|  | Cable B Initialization Error |
| 5 | RAM Address Error |
| 6 | RAM Data Error |
| 7 | Exec Checksum Error |
| 8 | Kernel Detected Error |
| * | *Invalid Switch Setting |

*Comm A/B Error LEDs flash together indicating an invalid switch setting.
Examples: Invalid Loop Address, Invalid ASCII Port Address, Invalid Mode Setting.

If an ASP890300 Remote I/O Processor exhibits any of the above flashing LED codes, follow the steps below.

| If . . . | Then . . . |
| :--- | :--- |
| an ASP890300 Remote I/O Processor stops operating <br> and exhibits any of the flashing LED codes in the previous <br> table, | cycle the processor power off <br> and back on when it is safe to do <br> so. |
| Comm Active is flashing in any of the following patterns: <br> - one blink <br> - seven blinks, or <br> - eight blinks, | power cycle as above, then <br> reflash the executive software. |
| neither of the above two actions restore normal operation, | replace the processor. |

## Installation

Overview The following procedure describes how to install an ASP890300 Processor. The processor is installed in an H810-208, H810-209, or H819/H827-209 800 Series I/O Housing in the left-most slot.

Panel Software Requirements

The ASP890300 is a direct replacement for the ASP89X-000 processor. If you need to reconfigure a program, you may use any panel software that supports P89X processors. Select the P89X when traffic copping (I/O mapping).

Use the following procedure to install an ASP890300 Processor.

| Step | Action |
| :--- | :--- |
| 1 | Set the processor's Mode Select and Drop Address switches appropriately. <br> - For example, when replacing or emulating an AS-P890-000, AS-J890-001, or AS- <br> J890-101, select Rotary Switch Position 1. |
| 2 | If using ASCII communications, set the processor's Port Address and Handshake <br> switches as required. <br> - The Port 1/Port 2 Handshake and J892 Port ASCI Address switches are ignored if <br> the Mode switch setting indicates ASCII is disabled. <br> - The Handshake switches are enabled if a switch position indicating ASCII Enabled <br> is selected. <br> - The J892 Port ASCI switches are enabled as indicated. |


|  | DANGER |
| :--- | :--- |
| HAZARDOUS VOLTAGE |  |
| - Disconnect all power before working on equipment. |  |
| - Verify correct terminal connections when wiring. |  |
| Failure to follow this precaution will result in death, serious injury, <br> or equipment damage. |  |


| Step | Action |
| :--- | :--- |
| 3 | Ensure the processor power source is switched off. Connect power wires to the <br> appropriate AC or DC power connector terminals. If using AC power, for 115VAC <br> operation, insert a jumper between terminals 4 and 5. |
| 4 | Connect the Remote I/O coaxial cables. Plug the power connectors into the <br> processor. <br> NOTE: Due to space restrictions (especially if the backplane is rack-mounted), drop <br> cables must be RG-6 maximum. If using dual cables, the suggested method for cable <br> connection is to attach the CHAN A cable first, then the CHAN B. When disconnecting, <br> reverse the process, and remove the CHAN B cable first. |
| 5 | Insert the processor into the leftmost slot of the backplane. Press firmly to ensure it is <br> properly seated in the backplane. |
| 6 | Tighten the captive screws at the top and bottom of the processor. |
| 7 | If used, plug the ASCII connectors into the processor. |
| 8 | For AC application, switch on "AC Pwr" <br> For DC application, switch on "DC Pwr" |
| 9 | Apply power when the system is ready for processor operation. Make sure that the <br> PWR OK and RDY LEDs are ON. If the system PLC is in RUN mode, make sure that <br> the COMM ACTIVE LED is ON and the OURBUS ERROR LED is OFF. |

## Specifications

ASP890300 Specifications

The following table describes the specifications of the ASP890300.

| Remote I/O Cabling | Coaxial cable 75 ohm |
| :--- | :--- |
| Remote I/O Connector | F-Type |
| Remote I/O <br> Communications Rate | 1.544 MHz |
| I/O scan time | Less than 5 ms for $256 \mathrm{I} / \mathrm{O}$ points |
| RIO comm link time | Less than 1 ms for $256 \mathrm{I} / \mathrm{O}$ points |
| Drop hold up time | Programmable from 300 ms to 6553.6 sec (in 100ms increments |
| Power supplied to I/O <br> (Short circuit proof) | $+5 \mathrm{VIO}, 7 \mathrm{~A} \mathrm{max}$ <br> $+4.3 \mathrm{~V}, 6 \mathrm{~A} \mathrm{max}$ <br> $-5 \mathrm{~V}, 0.5 \mathrm{~A}$ max <br> *The +5 VIO and +4.3 V combined cannot exceed 7 A. |
| Power Requirements | $115 \mathrm{VAC}, 1.1 \mathrm{~A}, 50 / 60 \mathrm{~Hz}$ <br> $230 \mathrm{VAC}, 0.65 \mathrm{~A}, 50 / 60 \mathrm{~Hz}$ <br> $24 \mathrm{VDC}, 4 \mathrm{~A}$ |
| Inrush Current | $30 \mathrm{~A} @ 115 \mathrm{VAC}$ <br> $25 \mathrm{~A} @ 24 \mathrm{VDC}$ |
| Power Loss Hold up time | 1 cycle AC loss <br> $1 \mathrm{~ms} \mathrm{@} \mathrm{24VDC}$ |

## Power Supply

The following table describes ASP890300 power supply testing. (These requirements do not apply to the DC auxiliary input.)

| Test | Reference | Spec. Limit |
| :--- | :--- | :--- |
| Isolation AC Line to Output |  | 2500 VDC <br> 1780 VAC |
| Electro-Static Discharge | IEC 1000-4-2 | 4KV Conducted <br> 8KV Air Gap |
| Radio Frequency Interference | IEC 1000-4-3 | 10V/m 27MHz-1GHz |
| Fast Transient | IEC 1000-4-4 | 2.0 KV Comm mode <br> 2.0 KV Diff mode |
| Surge Withstand | IEC1000-4-5 | 2.0 KV Comm Mode <br> 1.0 KV Diff Mode |
| Conducted RF Susceptibility | IEC1000-4-6 | $0.15 \mathrm{KHz-80MHz} \mathrm{10Vrms}$ |
| Damped Oscillatory Wave | IEEE472 | 2.5 KV Diff Mode <br> 2.5 KV Comm Mode |

RIO Interface The following table describes ASP890300 RIO interface testing.

| Test | Reference | Spec. Limit |
| :--- | :--- | :--- |
| Isolation Coax to Backplane |  | 500 VDC |
| Electro-Static Discharge | IEC 1000-4-2 | 4KV Conducted <br> 8KV Air Gap |
| Radio Frequency Interference | IEC 1000-4-3 | $10 \mathrm{~V} / \mathrm{m}$ 27MHz-1GHz |
| Fast Transient | IEC 1000-4-4 | 1.0 KV Cap Clamp |
| Surge Withstand | IEC1000-4-5 | 2.0 KV to Shield |
| Conducted RF Susceptibility | IEC1000-4-6 | $0.15 \mathrm{KHz}-80 \mathrm{MHz} \mathrm{10Vrms}$ |
| Damped Oscillatory Wave | IEEE472 | 2.5 KV to Shield |

ASCII Ports The following table describes ASP890300 ASCII ports testing.

| Test | Reference | Spec. Limit |
| :--- | :--- | :--- |
| Isolation |  | No Test |
| Electro-Static Discharge | IEC 1000-4-2 | 4 KV Conducted <br> 8 KV Air Gap |
| Radio Frequency Interference | IEC 1000-4-3 | $10 \mathrm{~V} / \mathrm{m}$ 27MHz-1GHz |
| Fast Transient | IEC 1000-4-4 | 1.0 KV Cap Clamp |
| Surge | IEC1000-4-5 | 2.0 KV to Shield |
| Conducted RF Susceptibility | IEC1000-4-6 | $0.15 \mathrm{KHz}-80 \mathrm{MHz}$ 10Vrms |
| Damped Oscillatory Wave | IEEE472 | No Test <30 meters |

Electromagnetic The following table describes ASP890300 electromagnetic emissions testing. Emissions

Temperature/ Vibration

| Test | Reference | Spec. Limit |
| :--- | :--- | :--- |
| Radiated | EN 55011 | $30-230 \mathrm{MHz}$ in situ at 10M 40dbuV <br> Emission |
|  | $230-1000 \mathrm{MHz}$ in situ at 10M 47dbuV |  |
| Conducted | EN55011 | $0.15-.5 \mathrm{MHz} 70(66)$ quasi peak (avg.) dbuV <br> Emission |
|  | $0.5 \mathrm{MHz}-30 \mathrm{MHz} 73$ (60) quasi peak (avg.) dbuV |  |

- Requires external filter

The following table describes ASP890300 temperature and vibration testing.

| Parameter | Reference | Specification Limits |
| :--- | :--- | :--- |
| Storage Temperature | IEC 68-2-14 | -40 to $+85^{\circ} \mathrm{C}$ |
| Operating Temperature | IEC 68-2-14 | 0 to $60^{\circ} \mathrm{C}$ Ambient |
| Humidity Non-Operating | IEC 68-2-3 | $95 \%$ RH at $60^{\circ} \mathrm{C}$ <br> non-condensing |
| Humidity Operating | IEC 68-2-3 | $95 \%$ RH at $60^{\circ} \mathrm{C}$ <br> non-condensing |
| Altitude | MIL-STD-810 | 15,000 feet |
| Vibration Operating | IEC-68-2-6 | $10-57 \mathrm{~Hz}: 0.075 \mathrm{~mm}$ Dual Axis |
| Shock Operating <br> 3 shocks/axis | IEC $68-2-27$ | $15 \mathrm{~g}, 11 \mathrm{~ms}$ |
| Free Fall Unpackaged | IEC $68-2-32$ | 1 m |

Agency Approvals

The following table describes ASP890300 agency approvals.

## Agency

UL 508
CSA 22.2-142
CE

# 800 Series Analog I/O Modules 

III

## Introduction

## At a Glance

This part provides a detailed description of the 800 Series analog I/O modules. It includes technical data and wiring information for each module.

What's in this Part?

This part contains the following chapters:

| Chapter | Chapter Name | Page |
| :---: | :--- | :--- |
| 7 | B846-001 \& B846-002 Input Multiplexers | 111 |
| 8 | B872-100 Analog Output | 117 |
| 9 | B872-200 Analog Output | 135 |
| 10 | B873-002 \& B875-002 Analog Input | 153 |
| 11 | B873-012 \& B875-012 Analog Input | 169 |
| 12 | B875-102 High Speed Analog Input | 183 |
| 13 | B875-111 \& B877-111 Analog Input | 213 |
| 14 | B875-200 Configurable A/D Input | 243 |

# B846-001 \& B846-002 <br> Input Multiplexers 

## At a Glance

## Purpose <br> The purpose of this chapter is to describe the features and functionality of the B846-

What's in this Chapter? 001 \& B846-002 Input Multiplexers.

This chapter contains the following topics:

| Topic | Page |
| :--- | :--- |
| B846-001 \& B846-002 Overview | 112 |
| B846-001 \& B846-002 Field Connections | 114 |
| B846-001 \& B846-002 Specifications | 115 |
| B846-001 Parameter Configuration | 116 |

## B846-001 \& B846-002 Overview

Characteristics Both the B846-001 Voltage Analog Multiplexer (MUX) and the B846-002 Current Analog Multiplexer (MUX) input modules accept 16 analog signals and connect one multiplexed signal to the output terminals of the module. The value of a 16 -bit discrete output (coil) or register assigned to the module determines which input signal is connected to the output.
The B846's receive a command from a PLC that tells the module which analog channel to connect to the output terminals. This communication is accomplished via an output register ( 4 x ), which is specified when traffic-copping the I/O system. The value of the output register dictates which channel is selected.
Features

| Module | Feature |
| :--- | :--- |
| B846-001 | Multiplexes analog voltage signals (+/-10 V, +/-5V, 1-5 V) |
|  | Accommodates all voltage levels up to +/-10 V |
| B846-002 | Multiplexes analog current signals (4-20 mA) |
|  | Accommodates an input range of 4-20mA |
| B846-001 and | Compatible with B873 and B875 Analog Input Modules |
|  | Communications ACTIVE indicator |
|  | Module's handles permit easy installation and removal |
|  | Channel indicators |
|  | Available with built-in resistors for 4-20mA loop operation |
|  | Detects communication failures |
|  | Designed for harsh plan floor environments |
|  | Remove module without disturbing rigid field wiring system |
|  | Meets IEEE surge withstand capability tests |
|  | Designed UL and CSA standards |

Each channel of the B846 has a high reliability DPST reed relay. The module is updated with every scan of the PLC, and the switched output is stable within ten milliseconds. The relay contacts are guaranteed to respond within 10 mS including diagnostics.
Each individual input channel may be wired with available 250 Ohm precision resistors. Wiring allows continuous $4-20 \mathrm{~mA}$ current loop operation when the B846 output is connected to a $1-5 \mathrm{~V}$ analog input.
Indicators on the module's bezel identify the input channel being enabled by the controller. The sixteen input channels are numbered from 0 to 15.
All outputs shut OFF in the event of a communications failure. Shut-off occurs within 300 ms of the signal loss. The module's ACTIVE indicator will also shut OFF.

The B846 module can be inserted into any location in the 800 Series I/O structure. The module slides easily into the housing and does not interfere with any other module's operation. An optional mechanical keying system can be used to match the module type with a particular slot in the housing to ensure proper module replacement. User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The module's protective case shields the logic circuitry from any electrical interference and minimizes the possibility of any noise being coupled from the user side of the circuitry to adjacent modules. A ground is automatically established when the module is inserted into the housing. This low impedance earth ground originates from the housing's backplane.

## B846-001 \& B846-002 Field Connections

User Input Connections

User connections are made to a standard screw terminal strip; and the rigid wiring system permits module insertion or removal, without disturbing the wiring. Refer to the following figure for terminal numbering and input connections.
Connector AS-8535-000


## B846-001 \& B846-002 Specifications

Specifications for B846 Input Multiplexers

The following table shows the specifications for the B846 Input Multiplexers.

| Description |  |  |
| :---: | :---: | :---: |
| B846-001 |  | Voltage Input Multiplexer |
| B846-002 |  | Current Input Multiplexer |
| Number of Input Points |  | 16, potential isolated from each other |
| Address Capacity |  | 1 register data out (Binary data type) |
| Ranges |  | $\begin{aligned} & \text { (B846-001) } 0-5 \mathrm{~V}, 1-5 \mathrm{~V},+/-10 \mathrm{~V} \\ & \text { (B846-002) } 4-20 \mathrm{~mA} \end{aligned}$ |
| Input Impedance |  | (B846-001) Equal to B873 or B875 <br> (B846-002) 250 ohms |
| Relay Response Time |  | 10 mS including diagnostics |
| Power Required |  |  |
| Pow | +5 VDC | 65 mA |
|  | +4.3 VDC | 1 mA |
|  | -5 VDC | 0 mA |
| Update Time |  |  |
|  | B846 MUX only | 3 mS |
|  | with B875 | 20 mS |
|  | with B873 | 20 mS |
| Note: An over range condition on any B873/B875 channel will add approximately 200 mS per over range channel, to update time of remaining channels. |  |  |
| Terminal Connector |  | AS-8535-000 |

## B846-001 Parameter Configuration

## Parameter and Default Values

Parameter Configuration Window


而1111:140 XBP. $3:$ B846
Module Configuration

| Parameter Name | Value <br> (Default) | Value <br> (Options Available) | Description |
| :--- | :--- | :--- | :--- |
| Mapping | WORD <br> $(\% M W-$ <br> $4 X)$ | - |  |
| Outputs Starting Address | 1 | - |  |
| Outputs Ending Address | 1 | - |  |
| Output Type | BINARY | BCD |  |

Mapping Parameter References

|  | 984LL, Concept, ProWORX | Unity |
| :--- | :--- | :--- |
| Reference Type | Mapped as 1 register output <br> $4 x$ | Mapped as 1 word output <br> $\% M W x$ |
| Output Type | BIN/BCD | BIN/BCD |

## B872-100 Analog Output

## At a Glance

## Purpose <br> The purpose of this chapter is to describe the features and functionality of the B872100 Analog Output Module.

What's in this Chapter?

This chapter contains the following topics:

| Topic | Page |
| :--- | :--- |
| B872-100, Analog Output | 118 |
| B872-100 Data Value to Output Conversion | 119 |
| B872-100 Field Connections | 122 |
| B872-100 - Setting Module DIP-Switch | 124 |
| Calibration | 126 |
| B872-100 Specifications | 131 |
| B872-100 Parameter Configuration | 133 |

## B872-100, Analog Output

Characteristics The B872-100 4-Channel Analog (D/A) Output Module converts numerical data ranging from 0000 to 4095 into current ranging from 4 to 20 mA (12-bit resolution). The module is designed to allow you to control the state of each output channel when the programmable controller is reset or stopped. The output of the channel can either remain at the last value (HOLD) or go to 0.0 mA (return to default: zero: RTZ). You can select this option for each of the four isolated outputs using a four-position DIP switch. A switch is associated with each output (switch 1 for output 1 , etc.). The HOLD or RTZ function is selected by you to meet your specific application. The RTZ function allows you to bring the outputs to zero as a safety feature. The HOLD function allows you to maintain the last valid output value after the loss of OURBUS communication.

## Note: Module Output Alert

RTZ disables the output of the module so that output current goes to zero, not to zero scale ( 4 mA ). Monitor voltage goes below 1 V to indicate an output current loss of less than 4 mA .

The module has four isolated analog outputs, and is capable of updates to all four channels every 1 mS . The 12-bit resolution and the absolute accuracy of $+/-0.1 \%$ at $25^{\circ} \mathrm{C}$ provides precise control of your application.
The following figure shows the simplified schematic of the B872-100 module.


## B872-100 Data Value to Output Conversion

Data Value to The B872 accepts data values ranging from 0000 to 4095 and converts them Output
Conversion Chart into output currents of 4 to 20 mA . The output current is directly proportional to the data value plus 4 mA . Refer to the figure below for a data value to output conversion chart.


Determining Data value or Output Current

To determine either the data value or the output current, use the following calculations:
To solve for output current:
Current $=($ Data Value / 256) +4
For example:
Current $=(3162 / 256)+4$
Current $=(12.35156)+4$
Current $=16.35156$
Current $=16.352$
To solve for data value:
Data Value $=($ Current -4$) \times 256$
For example:
Data Value $=(10.402-4) \times 256$
Data Value $=(6.402) \times 256$
Data Value $=1638.912$
Data Value $=1639$

Note: Data values larger than 4095 will result in currents less than 20 mA . Refer to the in this chapter. The equations above are valid for data values of 0-4095 only. The module can output values in the range of 4096-8191 in a offset scale. If you use this offset range, be sure to subtract 4096 from the calculations provided above.Trim-Pots Location and Voltmeter Connections, p. 127

## B872-100 Field Connections

$$
\begin{array}{ll}
\text { User } & \text { User connections are made to a standard screw terminal strip, and the rigid wiring } \\
\text { Connections } & \text { system permits module insertion or removal, without disturbing the wiring. }
\end{array}
$$

Terminal
Numbering and Functions

Terminal numbering, and their corresponding output functions, are presented in the figure below.

(1) FIELD DEVICES MAY BE LOCATED IN EITHER SINK OR SOURCE LEADS AS SHOW
(2) VM IS AN OPTIONAL VOLTMETER THAT READS A VOLTAGE PROPORTIONAL TO

## B872-100 - Setting Module DIP-Switch

## Switch location and position

Switch Settings The following figure presents DIP switch settings for the B872-100 module. Also, refer to the label located on the left side of the module itself.

4- POSITION DIP- SWITCHES

| TOP OF MODULE |  |
| ---: | :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| 0 | 1 |
| ON | OFF |
| DOWN | UP |
| LEFT | RIGHT |
| RTZ | HOLD |

## SWITCHES

1,2,3,4- Channel

## FUNCTIONS

STATE OF OUTPUT WHEN PC RESETS OR STOPS
FOR RTZ:
SW=L
FOR HOLD:
$S W=R$

Set the switch to the left to select return-to-zero or to the right to select hold (viewing the rear of the module when held vertically). Channels are set independently.

Note: The output state after power-up initialization is dependent on the position of DIP-switch. Open circuit in the following table results in current 0 mA .

The following table represents the Relationship Between Power-up and DIP-Switch Settings.

| Possible Event During Power-up | Switch=RTZ | Switch=HOLD |
| :--- | :--- | :--- |
| At Power-up | Open Circuit | Open Circuit |
| After Receiving Valid Data | Data | Data |
| PC Stop (After Run) | Open Circuit | Last Data |
| Loss of +5 V | Open Circuit | Open Circuit |
| Loss of +4.3 VIO | Open Circuit | Last Data |
| Loss of $+5 \mathrm{~V} \&+4.3 \mathrm{VIO}$ | Open Circuit | Open Circuit |

Calibration

## Calibration Intervals

Calibration Tools The following tools are needed to calibrate an Analog Output module:

1) A programming panel
2) A precision voltmeter, with an accuracy of $+/-0.0001$ volts on a 10 volt scale
3) A $1 / 4$ inch Phillips screwdriver
4) A $1 / 8$ inch standard screwdriver

## Calibration Procedure (Method 1)

The Analog Output module is calibrated at the factory prior to shipment. To ensure the module's accuracy you should calibrate the trim-pots for each output regularly. Calibration is recommended at 12 month intervals for operation between $25-45^{\circ} \mathrm{C}$ and at 6 month intervals between $0-60^{\circ} \mathrm{C}$.

To make the adjustments, a load and loop supply must be connected to the channel being calibrated. There are two ways to make the adjustments. One procedure requires a load and loop supply to be assembled using voltage and resistance (Method 1). Refer to the Calibration Voltage/Resistance Procedure and the Voltmeter Connections Diagram. The second procedure uses the existing field side circuit (Method 2). Refer to the Calibration Procedure, the Voltmeter Connections Diagram, and the Voltage/Resistance Chart. The following table the Calibration Voltage/Resistance Procedure (Method 1).

| Step | Action |
| :--- | :--- |
| 1 | Use a close tolerance 250 ohm resistor (+/-0.01\%) and a voltage supply of between 12 and 35 VDC. <br> The voltage readings will be taken across the resistor. Connect as indicated in the upper part of the <br> Voltmeter Connections diagram. |
| 2 | Remove the two screws and the label located on the front panel of the Analog Output module. This <br> allows you access to the trim-pots. There are two trim-pots per output. The first two trim-pots are <br> for output number one, the second set is for output two, etc. Refer to the figure below for the <br> Location of Trim Pots. |
| 3 | Open the Analog Output module handle to expose the connectors and terminals. |
| 4 | Load the data value of 0000 into the output register for the channel under test. |
| 5 | Adjust the top (4 mA calibrate) trim-pot of the set for a voltage of $+1.0000,+/-0.002$ volts. This <br> calibrates to $+/-0.05 \%$ of full scale. |
| 6 | Manually program a data value of 4095 into the output register for channel one. |
| 7 | Adjust the bottom (20 mA calibrate) trim-pot of the set for a voltage reading of $+4.9990,+/-0.002$ <br> volts. This calibrates to $+/-0.05 \%$ of full scale. |
| 8 | Return to step 4 and repeat steps 4-8 until module is within tolerance. |
| 9 | Move connections to next channel to calibrate, and repeat steps 4 through 8 for each output <br> channel. |
| 10 | After the calibration procedure is complete, disconnect the voltmeter, return connections to their <br> original state, close module handle, and replace front label that covers the trim-pots. Pot locking <br> paint, and other substances are not required. |

Trim-Pots Location and Voltmeter Connections

The following figure shows the location of the Trim-Pots on the B872 Module.


The following figure is the Voltmeter Connections diagram for the B872-100 Module.

```
                                    PRECISION LOAD RESISTOR
        INTERNAL FRAME
        INTERNAL FRAME GND
            CURRENT SINK CH 1
        CURRENT SOURCE CH 1
        CURRENT SOURCE CH }
            MONITOR CH }
            NO CONNECTION
            NO CONNECTION
            NO CONNECTION
        NO CONNECTION
    CURRENT SINK CH }
CURRENT SOURCE CH }
CURRENT SOURCE CH }
            MONITOR CH 2
                    NO CONNECTION
                    NO CONNECTION
                    NO CONNECTION
                    NO CONNECTION
                    NO CONNECTION
                    NO CONNECTION
        ANY LOAD RESISTOR MEETING THE
        REQUIREMENTS
```

2500HMS, $+/-0.01 \%$


TYPICAL HOOKUP FOR CALIBRATION VIA
NOTE: MONITOR TERMINAL IS NOT USED WHEN CALIBRATING VIA METHOD 1

ANY LOAD RESISTOR MEETING THE REQUIREMENTS

INTERNAL FRAME GND INTERNAL FRAME GND

CURRENT SINK CH 3 CURRENT SOURCE CH 3 CURRENT SOURCE CH 3

MONITOR CH 3
NO CONNECTION
NO CONNECTION
NO CONNECTION
NO CONNECTION
CURRENT SINK CH 4 CURRENT SOURCE CH 4 CURRENT SOURCE CH 4

MONITOR CH 4
NO CONNECTION
NO CONNECTION
NO CONNECTION
NO CONNECTION
NO CONNECTION NO CONNECTION

| (21) <br> (2) <br> (3) <br> (24) <br> (5) <br> (6) <br> (27) <br> (28) <br> (9) <br> (30) <br> (11) <br> (32) <br> (3) <br> (34) <br> (55) <br> (36) <br> (37) <br> (38) <br> (39) <br> (40) |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



TYPICAL HOOKUP FOR CALIBRATION VIA METHOD 2

Calibration Procedure (Method 2)

The following table gives the Calibration Procedure (Method 2) for the B872-100 Module:

| Step | Action |
| :--- | :--- |
| 1 | Connect loop supply and load resistor (if any) as indicated in the lower part of the <br> Voltmeter Connections Diagram. Verify that resistor and loop supply are within limits <br> as defined by the Voltage Resistance Chart. |
| 2 | Connect voltmeter to monitor terminals as indicated in the lower part of the Voltmeter <br> Connections Diagram. |
| 3 | Load the data value of 0000 into the output register for the channel under test. |
| 4 | Adjust the top (4 mA calibrate) trim-pot of the set for a voltage of $+1.0000,+/-0.002$ <br> volts. This calibrates to $+/-0.05 \%$ of full scale. |
| 5 | Manually program a data value of 4095 into the output register for channel one. |
| 6 | Adjust the bottom (20 mA calibrate) trim-pot of the set for a voltage reading of +4.9990, <br> $+/-0.002$ volts. This calibrates to $+/-0.05 \%$ of full scale. |
| 7 | Return to step 3 and repeat steps 3-6 until module is within tolerance. |
| 8 | Move connections to next channel to calibrate, and repeat steps 3 through 7 for each <br> output channel. |



## B872-100 Specifications

B872-100 The following table gives the specifications for the B872-100 Module.
Specifications

| Description | Analog output D/A; 4-20 mA |
| :---: | :---: |
| Number of Points | 4 |
| Operating Range | 4-20 mA |
| Maximum Loop Supply Voltage | 60 VDC |
| Allowable Resistance Range* |  |
| Minimum and <br> Maximum | Rmin $=$ VLoop** -30 V 0.02 A <br> Rmax $=$ VLoop ${ }^{* *}-7 \mathrm{~V}$ 0.02 A |
| *Resistance is the sum of all components, including wiring, in the field side circuit. |  |
| **VLoop equals the voltage of the loop supply (not to exceed 60VDC). If voltage is $<30 \mathrm{VDC}$, then the minimum loop resistance is 0 Ohms. Refer to the Calibration Procedure (Method 2), p. 129 |  |
| Voltage Drop @ 20 mA |  |
| Minimum Maximum | 7 VDC 30 VDC |
| Response Time to Within +/_0.1\% of Full Range | 35 mS , all four channels |
| Valid Data Values | 0 thru 4095, or offset 4096-8191 |
| Resolution | 1 part in 4096 counts |
| Monitor Output Voltage |  |
| Range | 1 to 5 VDC |
| Min Load | 1 Megohm |
| Impedance | 470 ohms, typical |
| Accuracy*** |  |
| Output Errors @ $25{ }^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right.$ ) |  |
| Overall | +/-0.1\% @ $25^{\circ} \mathrm{C}$ absolute |
| Nonlinearity | +/-0.024\% |
| Differential Nonlinearity | +/-0.036\% |
| *** All percentages are of full range. |  |
| Output Isolation |  |
| Output to OURBUS | 1500 VAC or 2500 VDC for 1 minute 500 VAC or 500 VDC continuous operation |


| Channel to Channel | 1500 VAC or 2500 VDC for 1 minute 500 VAC or 500 VDC continuous operation |
| :---: | :---: |
| Conversion |  |
| Resolution Update Time | 12-bits (1 part in 4096 <br> The module can accept new data every 1 mS for a 4 channel update) |
| Settling Time | Within $+/-0.1 \%,<350 \mathrm{mS}$ |
| Linearity | 0 to $60^{\circ} \mathrm{C},+/-1$ LSB maximum |
| Differential Nonlinearity | 0 to $60^{\circ} \mathrm{C},+/-1.5$ LSB maximum |
| Load Inductance | 1 Henry max, with no external diode suppression |
| Power Required |  |
| $\begin{aligned} & +5 \mathrm{~V} \\ & +4.3 \mathrm{~V} \\ & -5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 475 \mathrm{~mA} \\ & 5 \mathrm{~mA} \\ & 0 \mathrm{~mA} \end{aligned}$ |
| Terminal Connector | AS-8535-000 |

## B872-100 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window


Module Configuration

| Parameter Name | Value <br> (Default) | Value <br> (Options Available | Description |
| :--- | :--- | :--- | :--- |
| Mapping | WORD (\%MW-4X) | - |  |
| Outputs Starting Address | 2 | - |  |
| Outputs Ending Address | 5 | - |  |
| Output Type | BINARY | BCD |  |

Mapping Parameter References

|  | Modsoft, Concept, ProWORX | Unity |
| :--- | :--- | :--- |
| Reference <br> Type | Mapped as 4 registers output <br> $4 x$ | Mapped as 4 words output <br> $\% M W x$ |
| Output Type | BIN/BCD | BIN/BCD |

## B872-200 Analog Output

## At a Glance

## Purpose <br> The purpose of this chapter is to describe the features and functionality of the B872200 Analog Output Module.

What's in this Chapter?

This chapter contains the following topics:

| Topic | Page |
| :--- | :--- |
| B872-200 Overview | 136 |
| B872-200 Data Value to Output Conversion | 138 |
| B872-200 Field Connections | 142 |
| B872-200 - Setting Module Jumpers | 144 |
| B872-200 - Setting Module DIP-Switch | 145 |
| B872-200 Calibration | 147 |
| B872-200 Specifications | 151 |
| B872-200 Parameter Configuration | 152 |

## B872-200 Overview

Characteristics The B872-200 4-Channel Analog (D/A) Output Module converts numerical data ranging from 0000 to 4095 into output voltage ranges (12-bit resolution).
The Analog Output module allows you to drive a wide array of field devices requiring different voltages based upon your unique application. You can select from four available output voltage ranges. The ranges, which are 0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-5$ to 5 V , and -10 to 10 V , are selected by means of four pairs of jumpers, one pair per channel. You can operate multiple ranges simultaneously.
The module is designed to allow you to control the state of each output channel when the programmable controller is reset or stopped. The output of the channel can either remain at the last value (HOLD) or go to 0.0 mV i.e., return-to-zero (RTZ). You can select this option for each of the four isolated outputs using a four-position DIP switch. A switch is associated with each output (switch 1 for output 1, etc.). The HOLD or RTZ function is selected by you to meet your specific application. The RTZ function allows you to bring the outputs to zero as a safety feature. The HOLD function allows you to maintain the last valid output value after the loss of Ourbus communication.

Note: Operative Interruption Hazard
RTZ disables the output of the module so that output voltage goes to zero, independent of range selected.

The module has four isolated analog outputs and is capable of updates to all four channels every 1 ms . The 12-bit resolution and the absolute accuracy of $+0.1 \%$ at 255 C provides precise control of your application. Refer to the figure below for the simplified schematic of the module.

The following figure is the simplified schematic diagram, for the B872-200 Module.


## B872-200 Data Value to Output Conversion

| Data Value | The B872 accepts data values ranging from 0000 to 4095 and converts them into <br> output voltages for all four ranges. The output voltage is directly proportional to the <br> Rata <br> data value. Refer to the figure below for a data value to output conversion chart. |
| :--- | :--- |
| The figure below is a Data Value to Output Conversion Chart, for the |  |
| B872-200 Module. |  |



```
Sample Calculations for determining voltage reading or data value for 0 to 5V or 0 to
Calculations
    10V Ranges:
To solve for voltage reading:
Voltage Output =}\frac{\mathrm{ Total Voltage Span* x Data Value}}{4096
For example:
Voltage Output = }\frac{5\times1024}{4096
Voltage Output = 1.250 VDC
To solve for data value:
Data Value = Output Volts x4096
For example:
Data Value = }\frac{3.1104\times4096}{5
Data Value = 2548
Calculations for determining voltage reading or data value for -5 to 5V or -10
to 10V Ranges:
To solve for voltage output:
```

```
Voltage Output \(=\frac{\text { Total Volts* } \times \text { Data Value }+ \text { Offset Voltage** }}{4096}\)
```

Voltage Output $=\frac{\text { Total Volts* } \times \text { Data Value }+ \text { Offset Voltage** }}{4096}$
For example:
Voltage Output = 10 < 1024+(-5)
4 0 9 6
Voltage Output = -2.500 VDC
To solve for data value:
Data Value =}\frac{(\mathrm{ Voltage Output - Offset Voltage**) }\times4096}{\mathrm{ Total Volts*}
For example:
Data Value =}\frac{(1.2183-(-5))\times4096}{10
Data Value = 2547
*Total Volts Span = Voltage sum from lowest to highest voltage in range is selected.
Examples:
-100 to 10V = 20V
-5 to 5V = 10V

```
**Offset Voltage = The lower number of the range is selected.
Examples:
-5 to \(5 \mathrm{~V}=-5 \mathrm{~V}\)
-10 to \(10 \mathrm{~V}=-10 \mathrm{~V}\)

\section*{B872-200 Field Connections}

User User connections are made to a standard screw terminal strip and the rigid wiring

\section*{Connections} system permits module insertion or removal without disturbing the wiring.
Terminal numbering and their corresponding output functions are presented in the figure below.


\section*{B872-200 - Setting Module Jumpers}

\section*{Location and The jumpers are located on the left side of the module (look for four access holes). Settings The holes allow access to the four pairs of jumpers which are used to select an output voltage range for the associated channel. Set the desired voltage range for 0 to \(5 \mathrm{~V}, 0\) to \(10 \mathrm{~V},-5\) to 5 V , or -10 to 10 V prior to installation. Refer to the figure below for the jumper settings. Also refer to the left side of the module itself. The module is shipped set for 0 to 10 V . The following figure gives the jumper settings for the B872-200 Module:}

OUTPUT VOLTAGE
RANGES
0 to \(+10 v\)
-10 to \(+10 v\)

0 to +5v

JUMPER
SETTINGS

\(1 \begin{array}{ll}0 \\ 0 \\ 0 & 0 \\ 0\end{array} \leftarrow\) PIN \#1

00
00
00
00 -PIN \#1
```

00
0
$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$

```

\section*{B872-200 - Setting Module DIP-Switch}

\section*{4-Position DIPSwitch}

The four position DIP-switch is located on the rear of the module. This switch controls the state of each channel when the system is reset or stopped. The output to the channel can either remain at the last value (Hold) or go to 0.0 mA Return-ToZero (RTZ).
Set the switch for either hold or RTZ prior to installation of the module. Each of the four switches control the mode of operation for its associated output (i.e., switch 1 for output 1, etc.). Refer to the figure below for switch settings. Also, refer to the label located on the left side of the module itself.
The following figure gives DIP-Switch Settings for the B872-200 Module.


\section*{SWITCHES}

1,2,3,4-Channel
FUNCTIONS
STATE OF OUTPUT WHEN PC RESETS OR STOPS
FOR RTZ:
SW=L
FOR HOLD:
\(\mathrm{SW}=\mathrm{R}\)
Set the switch to the left to select return-to-zero or to the right to select hold (viewing the rear of the module when held vertically). Channels are set independently.

Note: The output state after power-up initialization is dependent on the position of DIP-switch. Open circuit in the following table results in current 0 mA .

The following table shows the Relationship Between Power-up \& DIP-Switch Settings.
\begin{tabular}{|l|l|l|}
\hline Possible Event During Power-up & Switch=RTZ & Switch=HOLD \\
\hline At Power-up & OVolts* & OVolts* \\
\hline After Receiving Valid Data & Data & Data \\
\hline PC Stop (After Run) & OVolts* & Last Data \\
\hline Loss of +5 V & OVolts* & 0Volts* \\
\hline Loss of +4.3 VIO & OVolts* & Last Data \\
\hline Loss of \(+5 \mathrm{~V} \&+4.3 \mathrm{VIO}\) & OVolts* & 0Volts* \\
\hline
\end{tabular}
*Active circuits of module are disconnected from the output terminals, the output terminals are connected to an internal 100 Ohm resistor.

\section*{B872-200 Calibration}

Principle The Analog Output Module is calibrated at the factory prior to shipment. To ensure the module's accuracy, you should calibrate the trim-pots for each output regularly. Calibration is recommended at 12 month intervals for operation between \(25-45^{\circ} \mathrm{C}\), and at 6 month intervals between \(0-60^{\circ} \mathrm{C}\).

\section*{Required Tools The following tools are needed to calibrate an Analog Output Module:}
1) A programming panel
2) A precision voltmeter, with an accuracy of \(+/-0.0001\) volts on a 10 volt scale
3) A \(1 / 4\) inch Phillips screwdriver
4) A \(1 / 8\) inch standard screwdriver

Calibration Procedure

The following table shows the steps to calibrate the B872-200 Module:
\begin{tabular}{|l|l|}
\hline Step & Action \\
\hline 1 & \begin{tabular}{l} 
Remove the two screws and the label located on the front panel of the Analog Output \\
module. This allows you access to the trim-pots. There is one trim-pot per output. The \\
first trim-pot is for output number one, the second set is for output two, etc. The trim- \\
pots adjusts the range's total magnitude (full scale). Refer to the figure below. \\
Note The 0.1\% tolerance is the maximum FSR accuracy achievable thru calibration \\
for any volt range. Calibrating any range to the 0.1\% tolerance throws the other slightly \\
off; i.e., tolerances for the remaining ranges available to that channel cannot be \\
assumed better than +/- 0.25\% FSR.
\end{tabular} \\
\hline 2 & Open the Analog Output module handle to expose the connectors and terminals. \\
\hline 3 & \begin{tabular}{l} 
Connect the voltmeter minus lead (-) to the channel 1 (Analog Common CH1) and the \\
plus lead (+) to the channel 1 (Analog Output CH1) terminal. Refer to the Voltmeter \\
Connections Diagram below. \\
Note Field wiring may remain connected during calibration.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
With the desired voltage range already selected. Manually program a data value of \\
4095 into the output register for channel two. Compare channel output voltage with \\
anticipated voltmeter reading given in the table below.
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Adjust the (full scale calibrate) trim-pot for corresponding channel to get desired \\
voltmeter reading.
\end{tabular} \\
\hline 6 & Repeat steps 3 through 5 for remaining channels. \\
\hline 7 & \begin{tabular}{l} 
After the calibration procedure is complete, disconnect the voltmeter, return all \\
connections to their original state, close the module handle, and replace the front label \\
that covers the trim-pots. \\
END OF PROCEDURE
\end{tabular} \\
\hline
\end{tabular}
\(\qquad\)

Location of Trim-Pots

The following figure shows the location of the Trim-Pots on the B872-200 Module.


\section*{Voltmeter Connections}

The following figure is the Voltmeter Connections Diagram for the B872-200 Module.

INTERNAL FRAME GND INTERNAL FRAME GND NO CONNECTION ANALOG COMMON CH 1 ANALOG COMMON CH 1 ANALOG OUTPUT CH NO CONNECTION NO CONNECTION NO CONNECTION NO CONNECTION NO CONNECTION ANALOG COMMON CH 2 ANALOG COMMON CH 2 ANALOG OUTPUT CH 2 NO CONNECTION NO CONNECTION NO CONNECTION NO CONNECTION NO CONNECTION NO CONNECTION


NO CONNECTION
NO CONNECTION NO CONNECTION ANALOG COMMON CH 3 ANALOG COMMON CH 3 ANALOG OUTPUT CH 3 NO CONNECTION NO CONNECTION NO CONNECTION NO CONNECTION NO CONNECTION ANALOG COMMON CH 3 ANALOG COMMON CH 3 ANALOG OUTPUT CH 3 NO CONNECTION

INTERNAL FRAME GND


Data Value to The following table gives Data Value to Output Channel, for the B872-200 Module. Output Channel
\begin{tabular}{|l|l|l|}
\hline Selected Voltage Range & Data Value & Voltmeter Reading \\
\hline-5 to 5 V & 4095 & 4.9976 \\
\hline-10 to 10 V & 4095 & 9.99951 \\
\hline 0 to 5 V & 4095 & 4.9988 \\
\hline 0 to 10 V & 4095 & 9.9976 \\
\hline
\end{tabular}

\section*{B872-200 Specifications}

B872-200 Specifications

The following table gives the Specifications for the B872-200 Module:
\begin{tabular}{|c|c|}
\hline Description & Analog output, D/A \\
\hline Number of Points & 4 \\
\hline Operating Range Voltage & \(0-5\) VDC, 0 - 10 VDC, -5 to 5 VDC, -10 to 10 VDC; selectable per channel \\
\hline Maximum Output Current & 10 mA \\
\hline Minimum Load & \[
\begin{aligned}
& 0-5 \mathrm{~V}=500 \Omega \\
& 0-10 \mathrm{~V}=1 \mathrm{k} \Omega \\
& -5 \mathrm{to}+5 \mathrm{~V}=500 \Omega \\
& -10 \mathrm{to}+10 \mathrm{~V}=1 \mathrm{k} \Omega
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Response Time to Within }+ \text { / } \\
& \text { 0.1\% } \\
& \text { of Full Range }
\end{aligned}
\] & 35 mS , all four channels \\
\hline Valid Data Values & 0 thru 4095 \\
\hline Resolution & 1 part in 4096 counts \\
\hline \begin{tabular}{l}
Accuracy*** \\
Output Errors @ \(25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)\) \\
Overall \\
Nonlinearity \\
Differential Nonlinearity \\
*** All percentages are of full range.
\end{tabular} & \[
\begin{aligned}
& +/-0.1 \% @ 25^{\circ} \mathrm{C} \text { absolute } \\
& +/-0.024 \% \\
& +-0.036 \%
\end{aligned}
\] \\
\hline Output Isolation Output to OURBUS Channel to Channel & 1500 VAC or 2500 VDC for 1 minute 500 VAC or 500 VDC continuous operation 1500 VAC or 2500 VDC for 1 minute 500 VAC or 500 VDC continuous operation \\
\hline \begin{tabular}{l}
Conversion Resolution Update Time \\
Settling Time Linearity Differential Nonlinearity Crosstalk
\end{tabular} & \begin{tabular}{l}
12-bits ( 1 part in 4096) \\
The module can accept new data every 1 mS for a 4 channel update Within \(+/-0.1 \%,<350 \mathrm{mS}\) 0 to \(60^{\circ} \mathrm{C},+/-1\) LSB maximum 0 to \(60^{\circ} \mathrm{C}\), +/- 1.5 LSB maximum \(-92 \mathrm{~dB}\)
\end{tabular} \\
\hline Load Inductance & 1 Henry max, with no external diode suppression \\
\hline \[
\begin{aligned}
& \text { Power Required } \\
& +5 \mathrm{~V} \\
& +4.3 \mathrm{~V} \\
& -5 \mathrm{~V} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
750 mA \\
5 mA \\
0 mA
\end{tabular} \\
\hline Terminal Connector & AS-8535-000 \\
\hline
\end{tabular}

\section*{B872-200 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


利 \(1: 140\) XBP. \(3:\) B872
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & WORD (\%MW-4X) & - & \\
\hline Outputs Starting Address & 2 & - & \\
\hline Outputs Ending Address & 5 & - & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

\section*{Mapping Parameter References}
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l} 
Mapped as 4 registers output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 4 words output \\
\(\% M W x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B873-002 \& B875-002 Analog Input}

\section*{10}

\section*{At a Glance}

Purpose The purpose of this chapter is to describe the B873-002 and B875-002 Analog Input Modules.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B873-002 \& B875-002 Overview & 154 \\
\hline B873-002 \& B875-002 Switch Settings and Indicators & 155 \\
\hline B873-002 \& B875-002 Installation & 156 \\
\hline B873-002 \& B875-002 Calibration & 159 \\
\hline B873-002 \& B875-002 Throughput Rate & 163 \\
\hline B873-002 \& B875-002 Field Connections & 164 \\
\hline B873-002 \& B875-002 Specifications & 166 \\
\hline B873-002 Parameter Configuration & 167 \\
\hline B875-002 Parameter Configuration & 168 \\
\hline
\end{tabular}

\section*{B873-002 \& B875-002 Overview}

B873-002 \& The B873-002 and B875-002 are analog input modules that can be used with 984 B875-002 Modules Programmable Controllers. The only difference between the two modules is that the B873-002 has four input channels and the B875-002 has eight input channels. The module can be set to produce a data value in the Standard Range ( 0000 to 4096) or the Elevated Range ( 4095 to 8192). It accepts inputs of 1.0 to 5.0 volts or 4 to 20 milliamperes. (Refer to B873-002 \& B875-002 Field Connections, p. 164). The input is converted to a numerical value, ranging from 0001 to 4095 (Standard). or 4096 to 8191 (Elevated). Values of 0000, 4095, 4096, or 8192 indicate invalid data and a possible problem. (Refer to the Data Value Reference Chart, p. 162). The value is directly proportional to the input signal. For example, an input voltage of 3.0 V causes the module to send a value of 2048 (Standard). Or the input could be 12mA, which would produce a value of 6144 (Elevated). (Refer to Input to Data Value Conversion, p. 161).

Note: Not having voltage or current on an input channel produces a data value of 0000 (Standard) or 4095 (Elevated).

The PC polls the module and places the values into input registers (30XXX) designated by the programmer.
Each time the module is powered up, it performs diagnostic tests, resets the input latches, and, for each channel, presents a value of 0000 to the controller. The value is present for approximately three seconds after power up. The module will then start converting the inputs according to the schedule found in the B873-002 \& B875-002 Throughput Rate, p. 163.

\section*{B873-002 \& B875-002 Switch Settings and Indicators}

\section*{Switch Settings}

There is a DIP switch located at the rear of the module. Switches 1 and 2 are not used. Switch 3 can be set to either Module Reset or Module Run. It must set to the Module Run position for the module to operate. Switch 4 is used to set which data value range the module will produce. Select either Normal Range or Elevated Range. Make sure you set Switch 3 and 4 before inserting the module into the housing. Refer to the figure below for a key to setting the DIP switch.


\section*{BLACK BOX INDICATES SWITCH IN DOWN POSITION}

The ACTIVE, OVER RANGE, UNDER RANGE indicators are located on the front panel of the module. The OVER RANGE and UNDER RANGE indicators are shared by all of the module's input channels. The module's status can be determined by referring to the table below.
The following table gives the Indicator readings for the B873-002 \& B875-002 Modules:
\begin{tabular}{|l|l|l|}
\hline Indicator & State & Condition \\
\hline Active & \begin{tabular}{l} 
ON \\
BLINKING \\
OFF
\end{tabular} & \begin{tabular}{l} 
The module is communicating properly and PC is running \\
The module failed the powerup reference test \\
The module failed the internal diagnostic test/PLC is not in Run \\
mode/communication from PLC to module has failed
\end{tabular} \\
\hline \begin{tabular}{l} 
Over \\
Range
\end{tabular} & \begin{tabular}{l} 
OFF \\
ON or \\
FLICKERING
\end{tabular} & \begin{tabular}{l} 
All input are within the valid input range \\
One or more inputs have exceeded the valid input range
\end{tabular} \\
\hline \begin{tabular}{l} 
Under \\
Range
\end{tabular} & \begin{tabular}{l} 
OFF \\
ON or \\
FLICKERING
\end{tabular} & \begin{tabular}{l} 
All input are within the valid input range \\
One or more inputs have dropped below the valid input range
\end{tabular} \\
\hline
\end{tabular}

\section*{B873-002 \& B875-002 Installation}

\section*{Installing the Module}

\section*{Module Characteristics}

Remove the module from the box and check for damage. If damage is found, contact your salesman or distributor for correct return procedure.
Set switch three to the Module Run position, and Switch four to the data range selected for input - either Standard or Elevated - before inserting the module into the housing. (Refer to Switch Settings, p. 155).

The following figure shows the 873 / 875 Module, at pre-installation.


Included with the module is an Analog Connector Set (Part\# AS-8533-001 for B873002 and Part\# AS-8533-002 for B875-002).
The Connector Set consists of two mounting screws, a wire duct, and either one (B873-002) or two (B875-002) field wiring connectors. Each connector has eighteen recessed slotted screw terminals and can accept various wire gauges, but 16 to 20 gauge is recommended for the field side wiring.


\section*{Steps to} Installation

The following table lists the steps for installing the B873/B875 Module:
\begin{tabular}{|l|l|}
\hline Step & Action \\
\hline 1 & Turn off the power to the housing. \\
\hline 2 & \begin{tabular}{l} 
Determine which slot will be used for the Analog Module.* If there is a duct present, \\
and it is different from the one provided in the connector set, then it must be \\
removed. This is accomplished by removing the two screws located on the top and \\
bottom of the housing and then pulling the duct out.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
If there is a module to the left of this slot, it must be removed until installation of the duct \\
is complete.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Insert the wire duct between the two slots with the screw holes to the left. (Refer to the \\
Installation Diagram.)
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Using the two \(1 / 4\) inch slotted screws provided in the package, secure the wire duct to \\
the housing.
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
Re-install the module(s) and complete the wiring connections. \\
*The wire duct can not be installed for the left-most slot of the housing. Therefore the \\
use of this slot for the Analog Module is not recommended.
\end{tabular} \\
\hline
\end{tabular}

\section*{B873-002 \& B875-002 Calibration}

\section*{Required Tools}

Calibration is recommended at 12 month intervals for operation at or below 405 C ( 1045 F) and at 6 month intervals between 405 and 605 C (1045 and 1405 F). The following tools are needed to calibrate a B873-002 or B875-002 module in a running system:
\begin{tabular}{|l|l|}
\hline 1. & A programmer \\
\hline 2. & A precision voltmeter \\
\hline 3. & An Analog DC Voltage/Current \\
\hline 4. & A \(1 / 4\) inch Phillips screwdriver \\
\hline 5. & A \(1 / 8\) inch standard screwdriver \\
\hline 6. & An adhesive for the trim pot adjusting screw (e.g. Locktight Glyptol) \\
\hline
\end{tabular}

Calibration Adjustments

To achieve full accuracy of the module, allow it to warm up for one hour with a valid input present at the channel to be used for the calibration. Without warm up, the accuracy of the data values will be \(+/-\% 2\) counts.

\section*{Steps to Calibration}

The adjustments can be made using a voltage or current source. Use steps 5 a through 10a for voltage or steps 5b through 10b for current.
\begin{tabular}{|l|l|}
\hline 1. & Remove trim pot access cover, located on the front panel. \\
\hline 2. & Open module handle to expose connector(s) and terminal(s). \\
\hline 3. & Unplug field wiring connector(s). \\
\hline 4. & Set up Programmer to monitor the register for the channel used for calibration. \\
\hline Method using a voltage source: \\
\hline 5a. & \begin{tabular}{l} 
Connect the positive lead of the voltage source to the channel's input + terminal and \\
the negative lead to the channel's input - terminal.
\end{tabular} \\
\hline 6a. & Set voltage source to output 1.00048 volts. \\
\hline 7a. & \begin{tabular}{l} 
While monitoring the register, adjust the top trim pot until the value toggles between \\
0000 and 0001 (Standard) or 4095 and 4096 (Elevated).
\end{tabular} \\
\hline 8a. & Use an adhesive to secure the adjusting screw on the trimmer. \\
\hline 9a. & Set voltage source to output 4.99951 volts. \\
\hline 10a. & \begin{tabular}{l} 
While monitoring the register, adjust the bottom trim pot until the value toggles \\
between 4095 and 4096 (Standard) or 8191 and 8192 (Elevated).
\end{tabular} \\
\hline Method using a current source:* \\
\hline 5b. & \begin{tabular}{l} 
Connect the positive lead of the current source to the channel's input + terminal and \\
the negative lead to the channel's input - terminal.
\end{tabular} \\
\hline 6b. & Set current source to output 4.002mA. \\
\hline 7b. & \begin{tabular}{l} 
While monitoring the register, adjust the top trim pot until the value toggles between \\
0000 and 0001 (Standard) or 4095 and 4096 (Elevated).
\end{tabular} \\
\hline 8b. & Use an adhesive to secure the adjusting screw on the trimmer. \\
\hline 9b. & Set current source to output 19.998mA. \\
\hline 10b. & \begin{tabular}{l} 
While monitoring the register, adjust the bottom trim pot until the value toggles \\
between 4095 and 4096 (Standard) or 8191 and 8192 (Elevated).
\end{tabular} \\
\hline 11. & Disconnect input source. \\
\hline 12. & Re-connect field wiring. \\
\hline 13. & Close module handle. \\
\hline 14. & Replace trim pot access cover. \\
\hline * To use this method, a jumper must be connected between the Current Sense terminal and \\
the Input + terminal of the channel to be calibrated. \\
\hline
\end{tabular}

\section*{Input to Data The following figure shows the Input to Data Value Conversion chart. Value \\ Conversion}


Calculation for determining Data Value (refer to the figure above and the table below):
Voltage:
(Input Voltage - 1) X 1024
Example: (Refer to Graph)
(4.4521V - 1) X 1024
3.4521 X \(1024=3534.9504\) (Add 4096 for Elevated Value)

Data Value = 3535 Standard 7631 Elevated
(Rounded to the nearest whole number)

Current:
(Input Current - 4) X 256
Example: (Refer to Graph)
( 13.078 mA - 4) X 256
\(9.078 \times 256=2323.968\) (Add 4096 for Elevated Value)
Data Value = 2324 Standard 6420 Elevated
(Rounded to the nearest whole number)
\begin{tabular}{l} 
Data Value \\
Reference Chart
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Standard & Elevated & Input Voltage, Current, or Condition \\
\hline 0000 & 0000 & \begin{tabular}{l} 
1. First three seconds after power up \\
2. During failure recovery
\end{tabular} \\
\hline 0000 & 4095 & Under range \\
\hline 0000 & OFF & 1.0000 V or 4mA \\
\hline 4095 & 4096 & 4.999 V or 19.995 mA \\
\hline 4095 & 8192 & Over range \\
\hline
\end{tabular}

\section*{B873-002 \& B875-002 Throughput Rate}

\author{
Update Interval \\ \section*{Update Interval Example}
}

Update Interval:*
B873- 4 Channels 400 ms
B875- 8 Channels 710 ms
Out of Range 220 ms per channel
All registers are updated every 400 or 710 ms , as long as the inputs on all of the channels are within the valid range. 220 ms is added to the update interval for each channel either under or over range. The input is considered under range when the voltage is at -3 V or below. This keeps unused channels from adding time to the Update Interval.

Note: The Over Range indicator will be on or flickering, if the input on any channel is between .999 and -2.999 V or below 4 mA ; but the 220 ms time will not be added to the Update Interval.

On an eight channel module, 2 channels are under range. All the registers assigned to the module will be updated every 1150 ms , until the inputs on the out of range channels return to the valid range. When they do, the update interval will return to 710 ms .
Update Interval =
(400 or 710) + (Out of Range Channels X 220)
Using the example above:
\((710)+(2 \times 220)=1150 \mathrm{~ms}\)
If one channel returned to the valid range, the update interval would reduce to 930ms.

Note: As long as the channel is out of range, the register assigned to it will either have data of 0000 (4095 Elevated), under range, or 4096 (8192 Elevated), over range. (Refer to the Data Value Reference Chart)
* The Update Interval is the amount of time necessary to update the data for all the registers assigned to the module.

\section*{B873-002 \& B875-002 Field Connections}

User
Connections

B873-002
Terminal
Numbering and Wire Connections

User connections are made to a standard screw terminal strip; and the rigid wiring system permits module insertion or removal without disturbing the wiring.

B873-002 terminal numbering and corresponding input functions are presented below.


B875-002
Terminal
Numbering and
Wire
Connections

B875-002 terminal numbering and corresponding output functions are presented below.


Note: If a user has a process where the Over-range or Under-range detection is immaterial, the unused voltage or current terminal, including the shields, on the field connector should be jumpered to Case ground.

If Over-range or Under-range detection is important to your process, and this detection is causing throughput problems with the unused channels (because they float or spike outside the range), then the unused voltage or current channels at the field connector, should be connected in parallel, to a valid Input channel. As long as the valid channel stays within range, the tied channels will also stay within range. For Current, 4 to 20ma operation, the valid Input is the only Input requiring the 250 Ohm resistor to be in the circuit.
Case ground is effective when the H8XX housing is connected to earth ground. The shield cannot be connected, both ends, to the device and the module. The exception to this is where the device shield is part of the device input circuit, and is not connected internally to device case ground.

Note: Any module run-time diagnostic failure will result in a 0000 value being returned to the controller, regardless of selected range.

\section*{B873-002 \& B875-002 Specifications}

\section*{Module The following table gives specifications for the B873-002 \& B875-002 Input Specifications Modules.}
\begin{tabular}{|c|c|}
\hline Description & Analog input
\[
4-20 \mathrm{~mA}, 1-5 \mathrm{VDC}
\] \\
\hline Number of Channels & \begin{tabular}{l}
4, (B873-002) \\
8, (B875-002)
\end{tabular} \\
\hline Operating Range Voltage/Current & 1-5 VDC / 4-20 mA \\
\hline Impedance Voltage Current & \begin{tabular}{l}
0.5 Megohm per input \\
1 Megohm differentially
\end{tabular} \\
\hline Resolution & 12 bit \\
\hline Filter & \[
\begin{array}{|l|}
\hline-3 \mathrm{~dB} @ 18 \mathrm{~Hz} \\
\text { Rolloff -20dB per decade }
\end{array}
\] \\
\hline Linearity & +. \(05 \%\) of full scale @ \(25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right.\) ) \\
\hline Protection & 240VAC RMS \\
\hline Common Mode Range Rejection & \begin{tabular}{l}
OVAC to 30VAC RMS \\
> -86dB @ 60Hz
\end{tabular} \\
\hline Isolation Channel to Channel Input to Case Module & \begin{tabular}{l}
250 VAC RMS \\
500 VAC RMS for one minute 1500 VAC RMS for one minute 300 VAC RMS continuous
\end{tabular} \\
\hline \begin{tabular}{l}
Accuracy Overall At \(25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)\) Offset Drift \\
Gain Drift
\end{tabular} & \[
\begin{aligned}
& 7 \mathrm{mV} \text { or } 19.7 \mu \mathrm{~A} \\
& +/-0.488 \mathrm{mV} \text { or }+/-1.95 \mu \mathrm{~A} @ 1.2207 \mathrm{mV} \\
& +/-30 \mu \mathrm{~V} \text { or }+/-0.12 \mu \mathrm{~A} \text { per }{ }^{\circ} \mathrm{C} \\
& +/-16.7 \mu \mathrm{~V} \text { or }+/-0.07 \mu \mathrm{~A} \text { per }{ }^{\circ} \mathrm{F} \\
& +/-15 \mathrm{ppm} \text { per }{ }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline Repeatability & Over a twenty-four hour period, with a constant voltage and at a constant operating temperature, the input data value will be within +/-2 counts. \\
\hline \[
\begin{aligned}
& \text { Power Required } \\
& +5 \mathrm{~V} \text { a } \\
& +4.3 \mathrm{~V} \\
& -5 \mathrm{~V}
\end{aligned}
\] & 300 mA 300 mA 0 mA \\
\hline Data Format
0000

4095
0000 to 4095
4096 to 8191
4096
8192 & \begin{tabular}{l}
Power Up \\
On Diagnostic Failure or during failure Recovery \\
Under Range - Standard \\
Under Range - Elevated \\
Valid - Standard Range \\
Valid - Elevated Range \\
Over Range - Standard \\
Over Range - Elevated
\end{tabular} \\
\hline \begin{tabular}{l}
Throughput Rates Update Interval \\
Out of Range \\
Terminal Connector
\end{tabular} & \begin{tabular}{l}
4 Channels 400 mS \\
8 Channels 710 mS \\
(Including Diagnostics) \\
220 mS for each channel in Under or Over Range condition (Refer to Throughput Section) \\
AS-8533-001 (B873-002) \\
AS-8533-002 (B875-002)
\end{tabular} \\
\hline
\end{tabular}

\section*{B873-002 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & WORD (\%IW-3X) & - & \\
\hline Inputs Starting Address & 1 & - & \\
\hline Inputs Ending Address & 4 & - & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l} 
Mapped as 4 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 4 words input \\
\%IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B875-002 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window
ANALG 8 CH IN


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & WORD (\%IW-3X) & - & \\
\hline Inputs Starting Address & 1 & - & \\
\hline Inputs Ending Address & 8 & - & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l} 
Mapped as 8 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 8 words input \\
\(\%\) IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & \(\mathrm{BIN} / \mathrm{BCD}\) \\
\hline
\end{tabular}

\section*{B873-012 \& B875-012 Analog Input}

\section*{At a Glance}

Purpose This chapter explains features and operation of the B873-012 \& B875-012 Analog Input Modules.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B873-012 \& B875-012 Overview & 170 \\
\hline B873-012 \& B875-012 Switch Settings and Indicators & 171 \\
\hline B873-012 \& B875-012 Installation & 172 \\
\hline B873-012 \& B875-012 Calibration & 175 \\
\hline B873-012 \& B875-012 Throughput Rate & 177 \\
\hline B873-012 \& B875-012 Field Connections & 178 \\
\hline B873-012 \& B875-012 Specifications & 180 \\
\hline B873-012 Parameter Configuration & 181 \\
\hline B875-012 Parameter Configuration & 182 \\
\hline
\end{tabular}

\section*{B873-012 \& B875-012 Overview}

Module Features The B873-012 and B875-012 are analog input modules and can be used with 984 Programmable Controllers. The only difference between the two modules is that the B873-012 has four input channels and the B875-012 has eight input channels. Both modules accept inputs of -10 to +10 volt analog signals. The input is converted to a numerical value, ranging from 0001 to 8191 . Values of 0000 or 8192 indicate invalid data. (Refer to the Data Value Reference Chart.) The value is directly proportional to the input signal. For example, an input voltage of -5 V causes the module to send a value of 2048. If the input signal goes to 5 V , the module sends a value of 6144. (Refer to Input to Output Data Conversion Chart.)

Note: 0.0 V or no voltage on an input channel produces a value of 4096.
The PC polls the module and places the values into input registers (30XXX) designated by the programmer.
Each time the module is powered up, it performs diagnostic tests, resets the input latches, and, for each channel, presents a value of 0000 to the controller. The value is present for approximately three seconds after power up. The module will then start converting the inputs according to the schedule found in the Throughput Rate Section.

\section*{B873-012 \& B875-012 Switch Settings and Indicators}

Switch Settings There is a DIP switch located at the rear of the module. Switches 1, 2 and 4 are not used. Switch 3 can be set to either Module Reset or Module Run. It must be set to the Module Run position for the module to operate. Make sure you set Switch 3 before inserting the module into the housing. Refer to the figure below for DIP switch settings.


BLACK BOX INDICATES SWITCH IN DOWN POSITION

\section*{Indicators}

The ACTIVE and OVER RANGE indicators are located on the front panel of the module. The OVER RANGE indicator is shared by all of the module's input channels. The module's status can be determined by referring to the table below.
\begin{tabular}{|l|l|l|}
\hline Indicator & State & Condition \\
\hline ACTIVE & \begin{tabular}{l} 
ON \\
BLINKING \\
OFF
\end{tabular} & \begin{tabular}{l} 
The module is communicating properly and the PC is running \\
The module failed the powerup reference test \\
The module failed the internal diagnostic test/PLC is not in Run \\
mode/communication from PLC to module has failed
\end{tabular} \\
\hline \begin{tabular}{l} 
OVER \\
RANGE
\end{tabular} & \begin{tabular}{l} 
OFF \\
ON or \\
BLINKING
\end{tabular} & \begin{tabular}{l} 
All input are within valid input range \\
One or more inputs have exceeded the valid input range
\end{tabular} \\
\hline
\end{tabular}

\section*{B873-012 \& B875-012 Installation}

Installing the Module

Remove the module from the box and check for damage. If damage is found, contact your salesman or distributor for correct return procedure.
Set Switch three to the Module Run position and Switch four to the data range selected for input - either Standard or Elevated - before inserting the module into the housing. (Refer to Switch Settings, p. 171.)

The following figure shows the B873-012 / B875-012 Module at pre-installation.


Included with the module is an Analog Connector Set (Part\# AS-8533-001 for B873012 and Part\# AS-8533-002 for B875-012).
The Connector Set consists of two mounting screws, a wire duct, and either one (B873-012) or two (B875-012) field wiring connectors. Each connector has eighteen recessed slotted screw terminals and can accept various wire gauges, but 16 to 20 gauge is recommended for the field side wiring.

Note: The wiring connections can only be made with a \(1 / 8\) inch blade screwdriver.
The connector plugs into the module with the field wiring to the left. The removable connector permits module removal and replacement without disturbing the wiring. Refer to diagram for Terminal Numbering, for terminal functions.
The wire duct protects the connections to the Analog Input Module from being damaged or loosened when the module to it's immediate left is removed.

The following figure is the Wire Duct Installation Diagram.


\section*{Steps to The following step table describes the installation of the Wire Duct, for the B873-012 Installing the \& B875-012 Modules:} Wire Duct
\begin{tabular}{|l|l|}
\hline Step & Action \\
\hline 1 & Turn off the power to the housing. \\
\hline 2 & \begin{tabular}{l} 
Determine which slot will be used for the Analog Module.* If there is a duct present and \\
it is different from the one provided in the connector set, then it must be removed.This \\
is accomplished by removing the two screws located on the top and bottom of the \\
housing and then pulling the duct out.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
If there is a module to the left of this slot, it must be removed until installation of the duct \\
is complete.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Insert the wire duct between the two slots with the screw holes to the left. (Refer to the \\
Installation Diagram.)
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Using the two \(1 / 4\) inch slotted screws provided in the package, secure the wire duct to \\
the housing.
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
Re-install the module(s) and complete the wiring connections. \\
* The duct cannot be installed for the left-most slot of the housing. Therefore the use \\
of this slot for the Analog Module is not recommended.
\end{tabular} \\
\hline
\end{tabular}

\section*{B873-012 \& B875-012 Calibration}

Required Tools
Calibration is recommended at 12 month intervals for operation at or below 405 C (1045 F), and at 6 month intervals between 405 and 605 C (1045 and 1405 F). The following table indicates the tools required, to calibrate the B873-012 \& B875012 Modules:
1. A programmer
2. A precision voltmeter
3. An Analog DC Voltage/Current

A 1/4 inch Phillips screwdriver
5. A \(1 / 8\) inch standard screwdriver
6. An adhesive for the trim pot adjusting screw (e.g. Locktight Glyptol)

\section*{Gain \\ Adjustments Procedure}

To achieve full accuracy of the module, allow it to warm up for one hour, with a valid input present at the channel to be used for the calibration. Without warm up, the accuracy of the data values will be +2 counts. The following table gives the steps for Gain Adjusting the B873-012 \& B875-012 Modules:
\begin{tabular}{|l|l|}
\hline Step & Action \\
\hline 1 & Remove trim pot access cover, located on the front panel. \\
\hline 2 & Open module handle to expose connector(s) and terminal(s). \\
\hline 3 & Unplug field wiring connector(s). \\
\hline 4 & Set up Programmer to monitor the register for the channel used for calibration. \\
\hline 5 & \begin{tabular}{l} 
Connect the positive lead of the voltage source to the channel's input + terminal and \\
the negative lead to the channel's input - terminal.
\end{tabular} \\
\hline 6 & Set voltage source to output 9.99877 volts. \\
\hline 7 & \begin{tabular}{l} 
While monitoring the register, adjust the trimmer until the value toggles between 8191 \\
and 8192 in binary mode.
\end{tabular} \\
\hline 8 & Use an adhesive to secure the adjusting screw on the trimmer. \\
\hline 9 & Disconnect input source. \\
\hline 10 & Re-connect field wiring. \\
\hline 11 & Close module handle. \\
\hline 12 & Replace trim pot access cover. \\
\hline
\end{tabular}

Input Voltage to Output Data Conversion

\section*{Determining} Data Value from Input Voltage

The following is the Input Voltage to Output Data Conversion Chart.


Calculation for determining Data Value from Input Voltage (refer to the figure above and the table below.
(Input Voltage + 10) X 409.6
Example: (Refer to Graph)
\((6.88824 \mathrm{~V}+10) \times 409.6\)
\(16.88824 \times 409.6=6917.4231\)
Data Value \(=6917\) (Rounded to the nearest whole number)

The following is the Data Value Reference Chart for the B873-012 \& B875-012 Input Modules.
\begin{tabular}{|l|l|}
\hline Data Value & Input Voltage, Current, or Condition \\
\hline 0000 & \begin{tabular}{l} 
1. First three seconds after powerup \\
2. During failure recovery \\
3. Under range
\end{tabular} \\
\hline 0001 & -9.99756 V \\
\hline 4096 & \begin{tabular}{l} 
1. 0.00000 V \\
2. No voltage at input terminal
\end{tabular} \\
\hline 8191 & 9.99756 V \\
\hline 8192 & Over range \\
\hline
\end{tabular}

Data Value
Reference Chart

\section*{B873-012 \& B875-012 Throughput Rate}
Update Interval \begin{tabular}{l} 
The following table provides Update Intervals for the B873-012 \& B875-012 \\
Modules. \\
\(\qquad\)\begin{tabular}{|l|l|l|}
\hline Update Interval:* & 4 Channels & 400 ms \\
\hline B873- & 8 Channels & 710 ms \\
\hline B875- & 220 ms per channel \\
\hline Out of Range &
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l}
\end{tabular}

All registers are updated every 400 or 710 ms , as long as the inputs on all of the channels are within the valid range. 220 ms is added to the update interval for each channel either under or over range.

\section*{Throughput Rate Example}

On an eight channel module, 2 channels are under range. All the registers assigned to the module will be updated every 1150 ms , until the inputs on the out of range channels return to the valid range. When they do, the update interval will return to 710 ms .
Update Interval = (400 or 710) + (Out of Range Channels X 220)
Using the example above:
\((710)+(2 \times 220)=1150 \mathrm{~ms}\)
If one channel returned to the valid range, the update interval would reduce to 930ms.

Note: As long as the channel is out of range, the register assigned to it will either have data of 0000 (4095 Elevated), under range, or 4096 (8192 Elevated), over range. (Refer to Data Value Reference Chart, p. 176)
* The Update Interval is the amount of time necessary to update the data for all the registers assigned to the module.

Note: Any module run-time diagnostic failure will result in a 0000 value being returned to the controller, regardless of selected range.

\section*{B873-012 \& B875-012 Field Connections}

User
Connections

B873-012
Terminal
Numbering and
Wire
Connections

User connections are made to a standard screw terminal strip, and the rigid wiring system permits module insertion or removal without disturbing the wiring.

B873-012 terminal numbering and corresponding input functions are presented in the figure below.

CASE GROUND NO CONNECTION INPUT 1+ INPUT 1 -
SHIELDING 1 NO CONNECTION INPUT 2+
INPUT 2-
SHIELDING 2
NO CONNECTION INPUT 3+
INPUT 3-
SHIELDING 3
NO CONNECTION
INPUT 4+ INPUT 4-
SHIELDING 4 CASE GROUND


B875-012 terminal numbering and corresponding input functions are presented in the figure below.


\section*{B873-012 \& B875-012 Specifications}

\section*{Module The following table gives specifications for the B873-012 \& B875-012 Input Specifications Modules.}
\begin{tabular}{|c|c|}
\hline Description & Analog input -10 to +10 VDC \\
\hline Number of Channels & \begin{tabular}{l}
4, (B873-012) \\
8, (B875-012)
\end{tabular} \\
\hline Operating Range & -10 to +10 VDC \\
\hline Impedance & \begin{tabular}{l}
0.5 Megohm per input \\
1 Megohm differentially
\end{tabular} \\
\hline Resolution & 13 bit \\
\hline Filter & \begin{tabular}{l}
-3 dB @ 18Hz \\
Rolloff -20dB per decade
\end{tabular} \\
\hline Linearity & +. \(05 \%\) of full scale @ \(25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right.\) ) \\
\hline Protection & 240VAC RMS \\
\hline Common Mode Range Rejection & \begin{tabular}{l}
OVAC to 30VAC RMS \\
\(>-86 \mathrm{~dB}\) @ 60Hz
\end{tabular} \\
\hline Isolation Channel to Channel Input to Case Module & \begin{tabular}{l}
250 VAC RMS \\
500 VAC RMS for one minute 1500 VAC RMS for one minute 300 VAC RMS continuous
\end{tabular} \\
\hline Accuracy Overall At \(25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)\) Offset Drift Gain Drift & \[
\begin{aligned}
& 17.1 \mathrm{mV} \\
& 1.2207 \mathrm{mV} \\
& 100 \mu \mathrm{~V} \text { per }{ }^{\circ} \mathrm{C} \\
& 55.6 \mu \mathrm{~V} \text { per }{ }^{\circ} \mathrm{F} \\
& +/-15 \mathrm{ppm} \text { per }{ }^{\circ} \mathrm{C} \\
& +-8.3 \mathrm{ppm} \text { per }{ }^{\circ} \mathrm{F}
\end{aligned}
\] \\
\hline Repeatability & Over a twenty-four hour period, with a constant voltage and at a constant operating temperature, the input data value will be within \(+/-2\) counts. \\
\hline \[
\begin{gathered}
\text { Power Required } \\
+5 \mathrm{~V} \mathrm{~V} \\
+4.3 \mathrm{~V} \\
-5 \mathrm{~V} \\
\hline
\end{gathered}
\] & 300 mA 300 mA 0 mA \\
\hline  & \begin{tabular}{l}
Power Up \\
On Diagnostic Failure or during failure Recovery \\
Under Range \\
Valid \\
Over Range
\end{tabular} \\
\hline \begin{tabular}{l}
Throughput Rates Update Interval \\
Out of Range
\end{tabular} & \begin{tabular}{l}
4 Channels 400 mS \\
8 Channels 710 mS \\
(Including Diagnostics) \\
220 mS for each channel in Under or Over Range condition
\end{tabular} \\
\hline Terminal Connector & AS-8533-001 (B873-012)
AS-8533-002 (B875-012) \\
\hline
\end{tabular}

\section*{B873-012 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & WORD (\%IW-3X) & - & \\
\hline Inputs Starting Address & 1 & - & \\
\hline Inputs Ending Address & 4 & - & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l} 
Mapped as 4 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 4 words input \\
\(\%\) IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B875-012 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window
ANALOG 8 CH IN


風1:140 XBP. \(3:\) B875
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & WORD (\%IW-3X) & - & \\
\hline Inputs Starting Address & 1 & - & \\
\hline Inputs Ending Address & 8 & - & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & 984LL, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l} 
Mapped as 8 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 8 \\
words input \\
\%IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B875-102 High Speed \\ Analog Input}

\section*{12}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B875-102} High Speed Analog Input module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B875-102 High Speed Analog Input, Inputs & 184 \\
\hline B875-102 High Speed Analog Input, Performance Considerations & 187 \\
\hline B875-102 High Speed Analog Input, Communications with the PLC & 191 \\
\hline B875-102 High Speed Analog Input, Typical Circuit and Ground Connections & 193 \\
\hline B875-102 High Speed Analog Input, Switch Settings & 194 \\
\hline B875-102 High Speed Analog Input, Indicators & 203 \\
\hline B875-102 High Speed Analog Input, Recalibration & 204 \\
\hline B875-102 High Speed Analog Input, Installation & 207 \\
\hline B875-102 High Speed Analog Input, Specifications & 210 \\
\hline B875-102 Parameter Configuration & 212 \\
\hline
\end{tabular}

\section*{B875-102 High Speed Analog Input, Inputs}

Configuration Module inputs are configurable in two groups by means of DIP switches.
The following table shows input switch group assignments for the four or eight input circuit configurations.
\begin{tabular}{|l|l|l|}
\hline Configuration & Input Group A & Input Group B \\
\hline Eight Input circuits & \(1,2,3,4\) & \(5,6,7,8\) \\
\hline Four input circuits & 1,2 & 3,4 \\
\hline
\end{tabular}

\section*{Input Ranges}

The following table shows the five input ranges acceptable to each input range group. The module will accept an input as much as \(2 \%\) FSR above its specified range without going into an over-range condition, but nothing below range.
\begin{tabular}{|l|l|}
\hline Voltage range (V) & Corresponding Current Range (mA \\
\hline \(0-5\) & \(0-20\) \\
\hline \(0-10\) & \(0-40\) \\
\hline \(1-5\) & \(4-20\) \\
\hline\(-10-+10\) & \(-40-+40\) \\
\hline\(-5-+5\) & \(-20-+20\) \\
\hline
\end{tabular}

For purposes of determining load and protection considerations for the inputting of field circuits, The following figure is a schematic diagram of the input circuit's front end. Note the built-in \(250 \Omega\) resistor connected to the current input terminal. When the current sense terminal is externally jumpered to the positive input terminal, current input becomes possible for that input regardless of the voltage range selected.

Note: The current sense function has been provided specifically for the \(4-20 \mathrm{~mA}\) current loop applications ( \(1-5 \mathrm{~V}\) input range). However, current mode is operable on all ranges.

B875-102 High Speed Analog Input, Input Circuit Front End.

1. Shield is tied to the ground within the module on the field side of the opto-barrier.
2. Circuit shown with current sense input jumpered to +Input terminal for current inputs (instead of voltage inputs).

\section*{B875-102 High Speed Analog Input, Performance Considerations}
\begin{tabular}{ll} 
Data Update & \begin{tabular}{l} 
The data update period is the time taken by the module to present fresh data for \\
each channel. With four input circuits, this period is no more than 2.4 ms ; for an eight \\
input circuit configuration, this period is no more than 3.0 ms .
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l} 
An internal autocalibration process is executed at appropriate times (if necessary) \\
to compensate signal processing for front end drift. The autocalibration function \\
employs feedback mechanisms to adjust the reference voltage to offset gain in the \\
analog to digital converter. Calibration is monitored continuously in the background \\
and adjusted if and when necessary. The following figure shows autocalibration \\
points for all five input ranges. Autocalibration points are indicated by heavy dots on \\
slope line. \\
The autocalibration process uses the 10 V reference to calibrate the module. The \\
reference voltage is factory preset to exactly 10 volts (zeroed to four places). It \\
should be readjusted in the field once per year.
\end{tabular}
\end{tabular}

\section*{Input Data Conversion}

The input module performs an analog-to-digital conversion of an input analog signal with 12 bit resolution (i.e., 1 part in 4096). This implies that the least significant bit of the output code corresponds to slightly more than \(0.024 \%\) of full scale.
The following illustration is a coarse grain conversion chart for plotting analog input against the equivalent numerical value output to the PC in raw binary format. The example illustrated shows an input voltage of 1.25 V ( \(25 \%\) of 5 V FSR) and a numerical count of 1024 ( \(25 \%\) of 4200 ) as projected through the 455 slope line. Calculate exact values using the following proportional equation: Where FSR is full scale range for analog input (including bipolar) and FCR is full count range (4200) in a raw binary format.

B875-102 High Speed Analog Input Autocalibration Points-All Ranges


B875-102 Input Signal vs. Output Data (Raw Binary Format)


\section*{Format Conversion}

\section*{Conversion Accuracy}

The module is capable of presenting the digitized data to the PC in either raw binary (RB) or converted binary (CB) format. The bit pattern in each case is different. The format is switch selectable and need not be the same for each group of input circuits. A Modicon programmer will display either type of data in one of three different ways: binary, hexadecimal, or decimal form.

Conversion linearity for this module is \(0.05 \%\) of full scale-referenced to a straight line drawn through the measured full-scale value and the measured zero point-over the module's operating temperature range.
Raw Binary (RB) Format After digitizing the input signal, the input module presents data in RB format. In decimal representation, data in RB format must be within the 0 to 4200 range. Normally, a 12--bit device would have an upper data limit of 4095. This analog module has the means of allowing the input to be up to \(2 \%\) over-range at the same resolution (i.e., the count in raw binary may go up to 4200). In RB format, the data range is the same regardless of the voltage range.
Converted Binary (CB) Format CB is obtained by transforming the RB format within the module. When CB data is viewed by the PC or programmer in decimal mode, it looks like a 4-digit voltmeter (DVM) with no sign or decimal point. In CB format, upper and lower data limits are voltage range dependent. Because of the missing sign, CB format is used only for unipolar voltage ranges.
The following figure shows an example of raw binary output. When a 5 V signal is digitized by the module set for 0 to 10 V range, it produces a converted binary code 0800 hex or 2048 decimal.
Raw Binary Word Format
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

The following figure shows the conditions in converted binary format which produce 1388 hex or 5000 decimal.
Converted Binary Word Format
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{B875-102 High Speed Analog Input, Communications with the PLC}

\section*{Input Ranges and Output Data Limits}

As shown in the following table, data can be in either raw binary or converted binary format. Within the \(2 \%\) maximum over-range margin allowed, no error code is reported to the PLC.
Input Ranges and Output Data limits
\begin{tabular}{|c|c|c|c|}
\hline Voltage range & Input Voltage & Raw Binary & Converted Binary \\
\hline \multirow[t]{3}{*}{0-5 V} & 0.000 & 0000 & 0000 \\
\hline & 5.000 & 4096 & 5000 \\
\hline & 5.127 (max) & 4200 & 5127 \\
\hline \multirow[t]{3}{*}{\(1-5 \mathrm{~V}\)} & 1.000 & 0000 & 1000 \\
\hline & 5.000 & 4096 & 5000 \\
\hline & 5.127 (max) & 4200 & 5102 \\
\hline \multirow[t]{4}{*}{0-10 V} & 0.000 & 0000 & 0000 \\
\hline & 9.999 & 4095 & 9999 \\
\hline & 10.000 & 4096 & N/A \\
\hline & 10.254 (max) & 4200 & N/A \\
\hline \multirow[t]{4}{*}{\(-5-+5 \mathrm{~V}\)} & -5.000 & 0000 & Disallowed \\
\hline & 0.0000 & 2048 & N/A \\
\hline & 5.000 & 4096 & N/A \\
\hline & 5.254 (max) & 4200 & N/A \\
\hline \multirow[t]{4}{*}{\(-10-+10 \mathrm{~V}\)} & -10.000 & 0000 & Disallowed \\
\hline & 0.000 & 2048 & N/A \\
\hline & 10.000 & 4096 & N/A \\
\hline & 10.508 (max) & 4200 & N/A \\
\hline
\end{tabular}

Diagnostic procedures are executed during the five second initialization period following power--up. Diagnostic routines are also run during wait states concurrent with executing A/D conversions. System diagnostics are: RAM checks, ROM checks, UART checks, as well as checking the legality of configuration switch settings and monitoring the ability to autocalibrate.
If the module fails to pass an internal diagnostic, two retries are made. If either one succeeds, the temporary failure is considered a soft failure and is not reported to the PC but the module system continues processing uninterrupted. If the module fails the diagnostic three times, the system goes into a power--up reset condition. switch settings and monitor

Note: While power-up diagnostics are running, or following detection of a hard failure, data is not available to the PLC.

Good Data. The following illustration shows status flags and data word format for good data to the plc. When sending good data, status flag bits 14 and 15 are reset to 0 .
Good Data Word Output to PLC


Out-of-range Data. The following figure shows status flags and data word format of out-of-range data output to the PLC. When sending out-of-range data, status bit 14 will be reset to 0 , bit 15 will be reset to 1 , and the OUT-OF-RANGE indicator will illuminate.
Out-of-range Data Word Output to PLC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 1 & 0 & 0 & \multicolumn{13}{|c|}{RAW BINARY DATA} \\
\hline 1 & 0 & \multicolumn{14}{|c|}{CONVERTED BINARY DATA} \\
\hline
\end{tabular}

Out--of--Range requires careful examination. Since the module receives instantaneous data from the field but sends averaged data to the PC, instantaneous data less than 0 or greater than 4200 in RB format is considered out-of-range. Such data will be forced (clamped) to 0000 for under--range and 4200 for over-range values. However, the averaged data will not necessarily be out-of-range if the condition existed for less time than the total averaging period.
In this case, the format indicates at least one of the instantaneous data samples in the average is out of range. Its value for averaging purposes is the clamped value; the average may or may not be out of range. The red OUT-OF-RANGE light will remain ON as long as an out-of-range data sample is included in the average.

\section*{B875-102 High Speed Analog Input, Typical Circuit and Ground Connections}

Field Connections

The following illustration shows typical field circuitry connected to the field connector.


Note: Shields 1-8 are tied together internally and also to field side ground within the module. For grounded sources, a jumper to case ground must be externally supplied by the user.

\section*{B875-102 High Speed Analog Input, Switch Settings}

\section*{Dip Switch} Bank A

The high speed analog input module can be set for any of the five input voltage or current ranges by means of DIP switches. You can also select from seven periods of digital filtering; a feature which allows an instantaneous voltage sample to become part of a moving average. The DIP switches also set the module for 4 or 8 circuit mode and binary or decimal output.
For discussion purposes, we will designate the upper DIP switch bank, A (DIP SwA) and lower bank, B (DIP Sw-B). These switches are accessed through ports at the rear of the module.
The following illustration shows DIP Sw-A as seen from the rear of the module. Dip Sw-A is used for selecting an input range.
Dip Switch Bank A-Normal Operation
DIP SWITCH SETTING
(LOGIC "1" LOGIC "0")
(LEFT (RIGHT)
(CLOSED OPEN)
(ON OFF)


\section*{Dip Switch Bank B}

The following illustration shows Sw-B. It is used to select input averaging. DIP Switch Bank B-Normal Operation


Note: Both Sw-A and Sw-B follow the same switch setting conventions:
- ON, CLOSED, LEFT, and logic "1" all mean the same.
- OFF, OPEN, RIGHT, and "logic 0" all mean the same.
- The switch bank views shown are looking at the back of the module.

\section*{Setting Input Range}

SW-A settings for all input ranges for both 8 and 4 input configurations, respectively, are shown in the following tables. SW-A has two functions in addition to input range setting
- Switch A7 is ON for an 8-circuit configuration and OFF for a 4-circuit configuration
- Switch A8 must be ON for normal operation

Inputs Group A (8 Circuit Mode)

The following table describes the input ranges for group A (Inputs 1-4):
\begin{tabular}{|c|c|c|c|}
\hline Input Range & Switch & On & Off \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 1-5 \mathrm{~V} \\
& 4-20 \mathrm{~mA}
\end{aligned}
\]} & A-1 & X & \\
\hline & A-2 & X & \\
\hline & A-3 & X & \\
\hline \multirow[t]{3}{*}{0-10V} & A-1 & & X \\
\hline & A-2 & X & \\
\hline & A-3 & X & \\
\hline \multirow[t]{3}{*}{0-5V} & A-1 & X & \\
\hline & A-2 & & X \\
\hline & A-3 & X & \\
\hline \multirow[t]{3}{*}{+/-10 V} & A-1 & & X \\
\hline & A-2 & & X \\
\hline & A-3 & X & \\
\hline \multirow[t]{3}{*}{+/-5 V} & A-1 & X & \\
\hline & A-2 & X & \\
\hline & A-3 & & X \\
\hline
\end{tabular}

Inputs Group B The following table describes the input ranges for group B (Inputs 5-8): (8 Circuit Mode)
\begin{tabular}{|c|c|c|c|}
\hline Input Range & Switch & On & Off \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 1-5 \mathrm{~V} \\
& 4-20 \mathrm{~mA}
\end{aligned}
\]} & A-4 & X & \\
\hline & A-5 & X & \\
\hline & A-6 & X & \\
\hline \multirow[t]{3}{*}{0-10V} & A-4 & & X \\
\hline & A-5 & X & \\
\hline & A-6 & X & \\
\hline \multirow[t]{3}{*}{0-5V} & A-4 & X & \\
\hline & A-5 & & X \\
\hline & A-6 & X & \\
\hline \multirow[t]{3}{*}{+/-10 V} & A-4 & & X \\
\hline & A-5 & & X \\
\hline & A-6 & X & \\
\hline \multirow[t]{3}{*}{+/-5 V} & A-4 & X & \\
\hline & A-5 & X & \\
\hline & A-6 & & X \\
\hline
\end{tabular}

Inputs Group A The following table describes the input ranges for group A (Inputs 1-2): (4 Circuit Mode)
\begin{tabular}{|l|l|l|l|}
\hline Input Range & Switch & On & Off \\
\hline \multirow{4}{*}{\begin{tabular}{l}
\(1-5 \mathrm{~V}\) \\
\(4-20 \mathrm{~mA}\)
\end{tabular}} & \(\mathrm{~A}-1\) & X & \\
\hline & \(\mathrm{A}-2\) & X & \\
\hline & \(\mathrm{A}-3\) & X & \\
\hline \multirow{4}{*}{\(0-10 \mathrm{~V}\)} & \(\mathrm{~A}-1\) & & X \\
\hline & \(\mathrm{A}-2\) & X & \\
\hline & \(\mathrm{A}-3\) & X & \\
\hline \multirow{4}{*}{\(\mathbf{0}-5 \mathrm{~V}\)} & \(\mathrm{~A}-1\) & X & \\
\hline & \(\mathrm{A}-2\) & & X \\
\hline & \(\mathrm{A}-3\) & X & \\
\hline \multirow{4}{*}{\(+/-10 \mathrm{~V}\)} & \(\mathrm{~A}-1\) & & X \\
\hline & \(\mathrm{A}-2\) & & X \\
\hline & \(\mathrm{A}-3\) & X & \\
\hline \multirow{4}{*}{\(+/-5 \mathrm{~V}\)} & \(\mathrm{~A}-1\) & X & \\
\hline & \(\mathrm{A}-2\) & X & \\
\hline & \(\mathrm{A}-3\) & & X \\
\hline
\end{tabular}

Inputs Group B (4 Circuit Mode)

The following table describes the input ranges for group B (Inputs 3-4):
\begin{tabular}{|c|c|c|c|}
\hline Input Range & Switch & On & Off \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 1-5 \mathrm{~V} \\
& 4-20 \mathrm{~mA}
\end{aligned}
\]} & A-4 & X & \\
\hline & A-5 & X & \\
\hline & A-6 & X & \\
\hline \multirow[t]{3}{*}{0-10 V} & A-4 & & X \\
\hline & A-5 & X & \\
\hline & A-6 & X & \\
\hline \multirow[t]{3}{*}{0-5V} & A-4 & X & \\
\hline & A-5 & & X \\
\hline & A-6 & X & \\
\hline \multirow[t]{3}{*}{+/-10 V} & A-4 & & X \\
\hline & A-5 & & X \\
\hline & A-6 & X & \\
\hline \multirow[t]{3}{*}{+/-5 V} & A-4 & X & \\
\hline & A-5 & X & \\
\hline & A-6 & & X \\
\hline
\end{tabular}

It is possible to compensate for spurious noise and other forms of amplitude modulation coming through the analog input filter by making the latest input sample part of a moving average-a form of digital filtering. This moving average technique has no affect upon the update interval.
The following tables show Sw-B setting for selecting among seven input average sample periods for both 8 and 4 circuit configurations.
Sw-B has other functions in addition to average sampling; Switch B7 is set to ON for binary code output or OFF for decimal code output for Group A (inputs 1-4 in the 8 circuit mode and inputs 1-2 in the 4 circuit mode). Switch B8 does the same for Group B.

SW-B Settings Group A (8 Circuit Mode)

The following table describes SW-B Settings for all periods of input averaging (Eight Circuits) for group A (Inputs 1-4):
\begin{tabular}{|c|c|c|c|}
\hline No. of samples averaged & Switch & On & Off \\
\hline 1 & B-1 & X & \\
\hline & B-2 & X & \\
\hline & B-3 & X & \\
\hline 2 & B-1 & & X \\
\hline & B-2 & X & \\
\hline & B-3 & X & \\
\hline 4 & B-1 & X & \\
\hline & B-2 & & X \\
\hline & B-3 & X & \\
\hline 8 & B-1 & & X \\
\hline & B-2 & & X \\
\hline & B-3 & X & \\
\hline 16 & B-1 & X & \\
\hline & B-2 & X & \\
\hline & B-3 & & X \\
\hline 32 & B-1 & & X \\
\hline & B-2 & X & \\
\hline & B-3 & & X \\
\hline 64 & B-1 & X & \\
\hline & B-2 & & X \\
\hline & B-3 & & X \\
\hline
\end{tabular}

SW-B Settings Group B (8 Circuit Mode)

The following table describes SW-B Settings for all periods of input averaging (Eight Circuits) for group B (Inputs 5-8):
\begin{tabular}{|c|c|c|c|}
\hline No. of samples averaged & Switch & On & Off \\
\hline \multirow[t]{3}{*}{1} & B-4 & X & \\
\hline & B-5 & X & \\
\hline & B-6 & X & \\
\hline \multirow[t]{3}{*}{2} & B-4 & & X \\
\hline & B-5 & X & \\
\hline & B-6 & X & \\
\hline \multirow[t]{3}{*}{4} & B-4 & X & \\
\hline & B-5 & & X \\
\hline & B-6 & X & \\
\hline \multirow[t]{3}{*}{8} & B-4 & & X \\
\hline & B-5 & & X \\
\hline & B-6 & X & \\
\hline \multirow[t]{3}{*}{16} & B-4 & X & \\
\hline & B-5 & X & \\
\hline & B-6 & & X \\
\hline \multirow[t]{3}{*}{32} & B-4 & & X \\
\hline & B-5 & X & \\
\hline & B-6 & & X \\
\hline \multirow[t]{3}{*}{64} & B-4 & X & \\
\hline & B-5 & & X \\
\hline & B-6 & & X \\
\hline
\end{tabular}

SW-B Settings Group A (8 Circuit Mode)

The following table describes SW-B Settings for all periods of input averaging (Eight Circuits) for group A (Inputs 1-2):
\begin{tabular}{|c|c|c|c|}
\hline No. of samples averaged & Switch & On & Off \\
\hline 1 & B-1 & X & \\
\hline & B-2 & X & \\
\hline & B-3 & X & \\
\hline 2 & B-1 & & X \\
\hline & B-2 & X & \\
\hline & B-3 & X & \\
\hline 4 & B-1 & X & \\
\hline & B-2 & & X \\
\hline & B-3 & X & \\
\hline 8 & B-1 & & X \\
\hline & B-2 & & X \\
\hline & B-3 & X & \\
\hline 16 & B-1 & X & \\
\hline & B-2 & X & \\
\hline & B-3 & & X \\
\hline 32 & B-1 & & X \\
\hline & B-2 & X & \\
\hline & B-3 & & X \\
\hline 64 & B-1 & X & \\
\hline & B-2 & & X \\
\hline & B-3 & & X \\
\hline
\end{tabular}

SW-B Settings
Group B (8 Circuit Mode)

The following table describes SW-B Settings for all periods of input averaging (Eight Circuits) for group B (Inputs 3-4):
\begin{tabular}{|c|c|c|c|}
\hline No. of samples averaged & Switch & On & Off \\
\hline \multirow[t]{3}{*}{1} & B-4 & X & \\
\hline & B-5 & X & \\
\hline & B-6 & X & \\
\hline \multirow[t]{3}{*}{2} & B-4 & & X \\
\hline & B-5 & X & \\
\hline & B-6 & X & \\
\hline \multirow[t]{3}{*}{4} & B-4 & X & \\
\hline & B-5 & & X \\
\hline & B-6 & X & \\
\hline \multirow[t]{3}{*}{8} & B-4 & & X \\
\hline & B-5 & & X \\
\hline & B-6 & X & \\
\hline \multirow[t]{3}{*}{16} & B-4 & X & \\
\hline & B-5 & X & \\
\hline & B-6 & & X \\
\hline \multirow[t]{3}{*}{32} & B-4 & & X \\
\hline & B-5 & X & \\
\hline & B-6 & & X \\
\hline \multirow[t]{3}{*}{64} & B-4 & X & \\
\hline & B-5 & & X \\
\hline & B-6 & & X \\
\hline
\end{tabular}

\section*{B875-102 High Speed Analog Input, Indicators}

\section*{Overview}

The following standard front-panel indicators reflect module communication status with the controller and provide an indication of field-side signal status.
Indicator Status Summary Table
\begin{tabular}{|l|l|l|}
\hline Indicator & State & Condition \\
\hline Active & ON & The module is communicating properly with the PLC \\
\hline & OFF & \begin{tabular}{l} 
The module failed the internal diagnostic test, which determines \\
if valid communication is possible.
\end{tabular} \\
\hline Out of Range & OFF & All inputs are within the valid input range. \\
\hline & BLINKING & One or more inputs are outside the valid input range. \\
\hline
\end{tabular}

The I/O Map for an eight-circuit configuration (B875) and four-circuit configuration (B873) looks alike.

\section*{B875-102 High Speed Analog Input, Recalibration}
Since the module is shipped factory-calibrated, it is the designer's intention that the
10 V reference voltage adjustment will be good for one year. It should be
recalibrated annually thereafter.
The following tools are needed to adjust the module's reference voltage:
- A precision digital readout voltmeter with an accuracy of 0.0001 V on a 10 V
- scale: \(6-1 / 2\) digits, to guarantee 4 bit count accuracy.
- A small-bit Phillips-heade screwdriver.
- An adhesive (such as Loctite or Glyptol) to secure trim-pot adjustment screws.

Note: Field wiring may remain connected during the recalibration procedure, as the module's working state is not interactive with the reference voltage adjustment. Also, the module does not require warmup to attain temperature.
\begin{tabular}{ll|l|}
\begin{tabular}{l} 
Recalibration \\
Procedure
\end{tabular} & \multicolumn{1}{l}{ Use the following table to recalibrate the module. } \\
\cline { 2 - 4 } & \begin{tabular}{ll|l|}
\hline Step & Action \\
\hline 1 & \begin{tabular}{l} 
Refer to illustration of reference voltage cover removal, below. Remove reference \\
voltage adjustment cover to gain access to trim pot.
\end{tabular} \\
\hline 2 & Connect DVM as shown in reference voltage adjustment circuit illustration, below. \\
\hline 3 & Adjust reference voltage trim pot for exactly 10.0000 V. \\
\hline 4 & Secure trim pot with adhesive. \\
\hline 5 & Disconnect voltmeter and secure trim pot access cover. \\
\hline 6 & Remove power from equipment housing. \\
\hline
\end{tabular}
\end{tabular}

Reference Module Cover Removal
Voltage Cover Removal


Reference Voltage Adjustment Circuit

Reference Voltage Adjustment Circuit


\section*{B875-102 High Speed Analog Input, Installation}


Field Connector/ Field Connector/Input Circuit Pinout Diagram. Input Circuit Pinout Diagram
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{ANALOG INPUT FIELD CONNECTOR} \\
\hline CASE GROUND & (1) \\
\hline CURRENT SENSE 1 & (2) \\
\hline INPUT 1 + & (3) \\
\hline INPUT 1 - & (4) \\
\hline SHIELD & (5) \\
\hline CURRENT SENSE 2 & (6) \\
\hline INPUT \(2+\) & (7) \\
\hline INPUT 2 - & (8) \\
\hline SHIELD & (9) \\
\hline CURRENT SENSE 3 & (10) \\
\hline INPUT 3 + & (17) \\
\hline INPUT 3 - & (12) \\
\hline SHIELD & (13) \\
\hline CURRENT SENSE 4 & (14) \\
\hline INPUT 4 + & (15) \\
\hline INPUT 4 - & (16) \\
\hline SHIELD & (1) \\
\hline CASE GROUND & (18) \\
\hline
\end{tabular}


Field Connector Mounting Diagram

Field Connector Mounting Diagram


\section*{B875-102 High Speed Analog Input, Specifications}

Specification
The following table provides the specifications for the unit.
Table
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B875-102 Specifications} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Channels
\end{tabular}} & & Fast A/D voltage or current input \\
\hline & B873/B875 & Four or eight isolated inputs \\
\hline \multirow[t]{10}{*}{Operating Range} & \multirow[t]{5}{*}{Voltage} & \(1-5 \mathrm{Vdc}\) \\
\hline & & 0-5 Vdc \\
\hline & & 0-10 V \\
\hline & & -5-+5 V \\
\hline & & -10—+10 V \\
\hline & \multirow[t]{5}{*}{Current} & 4-20 mA \\
\hline & & \(0-20 \mathrm{~mA}\) \\
\hline & & 0-40 mA \\
\hline & & -20-+20 mA \\
\hline & & -40-+40 mA \\
\hline \multirow[t]{3}{*}{Impedance} & \multirow[t]{2}{*}{Voltage Mode} & >10 M \(\Omega\) input differentially \\
\hline & & \(1.5 \mathrm{k} \Omega\) with power removed \\
\hline & Current Mode & \(250 \Omega\) /input \\
\hline \multicolumn{2}{|l|}{Resolution} & 12 bit \\
\hline \multicolumn{2}{|l|}{Filter} & Single Pole dc to 1.0 kHz \\
\hline \multirow[t]{2}{*}{Linearity} & \multirow[t]{2}{*}{\begin{tabular}{l}
Error \\
Differential
\end{tabular}} & . \(05 \%\) of full scale over operating temperature range \\
\hline & & 0.0244\% of full scale @ \(25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)\) \\
\hline \multicolumn{2}{|l|}{Protection} & 120 Vac differential input (voltage mode only) \\
\hline \multirow[t]{2}{*}{Common Mode} & Range & Input voltage plus common mode voltage less than 12 V \\
\hline & Rejection & >-70 dB, dc to 60 Hz \\
\hline \multirow[t]{3}{*}{Isolation} & Input to Case & 1500 Vac RMS for i minute \\
\hline & Input to Input & 30 Vdc \\
\hline & Input to OURBUS & 1500 Vac RMS for 1 minute \\
\hline \multirow[t]{2}{*}{Accuracy} & @ \(25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right.\) ) & 0.1\% of full scale (4 counts) \\
\hline & Over 0-60 \({ }^{\circ} \mathrm{C}\) & 0.25\% Of full scale (10 counts) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8533-004 \\
\hline \multicolumn{2}{|l|}{Repeatability} & \(0.25 \%\) of full scale (10 counts) of full scale RMS, constant temperature, no averaging \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B875-102 Specifications} \\
\hline \multicolumn{2}{|l|}{Autocalibration} & High/low range points recalibrated during run time \\
\hline \multicolumn{2}{|l|}{Power-up Time} & 5 s maximum \\
\hline \multicolumn{2}{|l|}{Warm-up Time} & 5 s concurrent with power-up) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 650 mA max, 300 mA typical \\
\hline & +4.3V & 975 mA max, 550 mA typical \\
\hline & -5 V & 0 mA \\
\hline \multirow[t]{4}{*}{Data Format} & 0000 & Power Up \\
\hline & 8000 Hex & Out of Range \\
\hline & 0001-4200 & Valid-All Ranges \\
\hline & 9068 Hex & Over Range \\
\hline \multirow[t]{2}{*}{Data Update Period Rate} & Four channels & 2.4 ms \\
\hline & Eight channels & 3.0 ms (including diagnostics). No additional time penalty for process or data for out-of-range condition. \\
\hline
\end{tabular}

\section*{B875-102 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & WORD (\%IW-3X) & - & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & - & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 8 & - & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l} 
Mapped as 8 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 8 words input \\
\(\%\) IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B875-111 \& B877-111 Analog Input}

\section*{13}

\section*{At a Glance}

Purpose \(\quad\) This chapter describes the functional and physical characteristics of the B875-111 and B877-111 Analog Input modules.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B875-111 Analog Input, Overview & 214 \\
\hline B875-111 Analog Input, Module Configuration & 216 \\
\hline B875-111 Analog Input, Field Connections & 220 \\
\hline B875-111 Analog Input, Application Example & 227 \\
\hline B875-111 Analog Input, Calibration & 233 \\
\hline B875-111 Analog Input, Quick Reference & 236 \\
\hline B875-111 Analog Input, Specifications & 237 \\
\hline B875-111 Parameter Configuration & 239 \\
\hline B877-111 Parameter Configuration & 240 \\
\hline B877-111,Terminal Numbering and Output Connections & 241 \\
\hline
\end{tabular}

\section*{B875-111 Analog Input, Overview}

\section*{General Characteristics}

The B875-111 Analog analog-to-digital (A/D) Input Module (B875) converts input voltage and/or input current ranges into binary data. This module can be configured to accept 8 differential or 16 single ended inputs. When selected for 8 differential inputs, the card is called a B875-111. When selected for 16 single ended inputs, the card is called a B877-111. Refer to the simplified schematic below.
The B875 Analog Input module allows the polling of a wide array of field devices requiring different voltages and different currents based upon a unique application. One can select from five available input voltage ranges on a module-wide basis. The ranges, which are 0 to \(5 \mathrm{~V}, 1\) to 5 V , --5 to 5 V , 0 to 10 V , and -10 to 10 V , are selected by means of four DIP switches on the module configuration switch.
One can select from three available input current ranges, which are 0 to \(20 \mathrm{~mA}, 4\) to 20 mA , and -20 to +20 mA .
One can select from four available output formats. The formats, which are standard, elevated, full resolution, and decimal, are selected by means of two DIP switches on the module configuration switch.
One can select either no averaging, or 8,16 , or 32 sample inputs to be averaged to generate each output by means of two DIP switches on the module configuration switch.
The module has eight/sixteen analog inputs and is capable of updates to all channels every 10-20 msecs. The greater than 12-bit resolution and the absolute accuracy of \(0.1 \%\) at \(0-60^{\circ} \mathrm{C}\) provides precise control of the application.

Simplified Block The following illustration represents the simplified schematic diagram for the B875Diagram 111 module.
B875-111 Analog Input Module, Simplified Schematic Diagram


\section*{B875-111 Analog Input, Module Configuration}


Use the following table to determine the functions for each switch.
\begin{tabular}{|c|c|}
\hline Switches & Functions \\
\hline \multirow[t]{3}{*}{SW1} & Input Range \\
\hline & For Bipolar ( 10 V , 5 V 20 mA ): SW1 = L \\
\hline & For Unipolar (0-10 V, 0-5 V, 0-20 mA, 1-5 V, 4-20 mA): SW1=R \\
\hline \multirow[t]{3}{*}{SW2} & Input Range \\
\hline & For Offset ( \(1-5 \mathrm{~V}\) or 4-20 mA): SW2=R \\
\hline & For No Offset (All other Ranges): SW2=L \\
\hline \multirow[t]{5}{*}{SW3 \& SW4} & Output Formats (refer to the following table for resolutions) \\
\hline & For Standard (0000-4095): both SW3 and SW4=R \\
\hline & For Elevated (4096-8191): SW3=L and SW4=R \\
\hline & For Full Resolution (Raw Binary): SW3=R and SW4=L \\
\hline & For Decimal (0001-9999): both SW3 and SW4=L \\
\hline \multirow[t]{5}{*}{SW5 \& SW6} & Samples to Averaged \\
\hline & For 1 Sample: SW5 and SW6 both R \\
\hline & For 8 Samples: SW5=L and SW6=R \\
\hline & For 16 Samples: SW5=R and SW6=L \\
\hline & For 32 Samples: SW5 and SW6 both L \\
\hline \multirow[t]{3}{*}{SW7} & Input Types \\
\hline & For 8 Differential (B875):SW7=R \\
\hline & For 16 Single Ended (B877): SW7=L \\
\hline \multirow[t]{3}{*}{SW8} & Input Ranges \\
\hline & For 10 V (10 V or 0-10 V): SW8=L \\
\hline & For 5 V (All Others): SW8=R \\
\hline
\end{tabular}

\section*{Output Format The following table provides the output formats and their resolution relationships: Selection}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Output \\
Format
\end{tabular} & \begin{tabular}{l} 
Under \\
Range
\end{tabular} & \begin{tabular}{l} 
Normal \\
Range
\end{tabular} & \begin{tabular}{l} 
Over \\
Range
\end{tabular} & Resolution & Actual Format \\
\hline Standard & 0000 & \begin{tabular}{l}
\(0000-\) \\
4095
\end{tabular} & 4096 & 12 bits & Raw binary, unsigned \\
\hline Elevated & 4095 & \begin{tabular}{l}
\(4096-\) \\
8191
\end{tabular} & 8192 & 12 bits & Raw binary, unsigned \\
\hline \begin{tabular}{l} 
Full \\
Resolution
\end{tabular} & \begin{tabular}{l} 
Bit \(16=1\) \\
Bit \(15=1\)
\end{tabular} & \begin{tabular}{l} 
Bit \(16=0\) \\
Bit \(15=0\) \\
\(1-7499\)
\end{tabular} & \begin{tabular}{l} 
Bit \(16=1\) \\
Bit \(15=0\)
\end{tabular} & \begin{tabular}{l} 
Bipolar=1/15000 counts \\
Unipolar=1/7500 counts \\
Offset=1/6000 counts
\end{tabular} & *Raw binary and two flags \\
\hline Decimal & \begin{tabular}{l} 
Bit \(16=1\) \\
Bit \(15=1\)
\end{tabular} & \begin{tabular}{l} 
Bit \(16=0\) \\
Bit \(15=0\) \\
\(1-9999\)
\end{tabular} & \begin{tabular}{l} 
Bit \(16=1\) \\
Bit \(15=0\)
\end{tabular} & \begin{tabular}{l} 
Bipolar=1/1000 counts \\
Unipolar=1/7500 counts \\
Offset=1/6000 counts
\end{tabular} & \begin{tabular}{l} 
Raw binary and two flags \\
\(1 — 9999\) counts \\
\(1-9999\) counts
\end{tabular} \\
\hline
\end{tabular}
*When an under or over range condition exists, the output word contains the applicable flag and the under or out-ofrange value.

Standard output format is raw binary output, 0-4095 counts. Under range is 0000 and over range is 4096.
Elevated output format is raw binary output, 4096-8191 counts. Under range is 4095 and over range is 8192.
Full resolution output format provides the true resolution of the module which depends on the input range.
- Bipolar inputs produce an output of 0001-14,999 counts
- Unipolar inputs produce an output of 0001-7499 counts
- Unipolar and offset inputs produce an output of 0001-5999 counts In the full resolution format, out-of-range values of \(2.4 \%\) may be read to the specified accuracy of the module. They can be read in this manner. When an out-of-range condition occurs which is over range the MSB (bit 16) is set to 1 . If an under range occurs the second MSB (bit 15) is also set to 1 . The remaining 14 bits give the absolute value of the amount over or under range. For example, for a unipolar input of 5.120 volts the output would have bit 16 set to 1 . The remaining output bits equaling the raw binary representation of 120 millivolts. Any input above the 0.120 volts in this range willnot be within the specified accuracy of the module. Decimal output format allows scaled outputs to provide 0001-9999 counts full scale. This format does not indicate the true resolution of the module. For bipolar inputs the output is scaled down and for unipolar inputs the output is scaled up. This format also reports out-of-range values in the same manner as the full resolution mode.

Note: For unipolar and unipolar with offset image ranges, the process of scaling the lower resolution output values to the 1-9999 output format creates the possibility of missing codes due to rounding off of numbers in the micro controller.

Note: When applying power to the equipment, or after a reset, the module transfers 4000 Hexadecimal during its internal reset, and initialization time until valid data is ready to be transferred. ( 4000 Hexadecimal corresponds to the second MSB=1, all other bits=0).

Input Selection
First, locate the four access holes on the left side of the module. These holes allow access to three four-position and one five-position DIP switch.
Next, set switch position 5 (SW5) of the five-position DIP switch found in the bottom access hole on the left side of the module, to select the input range. This switch must correspond to switch position 8 (SW8) of the eight-position module configuration DIP switch. SW5 and SW8 settings must be identical.

Note: For switch SW5, the input ranges are as follows:
- For 10 V ( 10 V or 0-10 V) place SW5 to the left.
- For 5 V (all others) place SW5 to the right.

\section*{B875-111 Analog Input, Field Connections}

\section*{Overview There are two ways to configure the module to accept current inputs. With eight differential current/voltage inputs the module is called the B875-111. With sixteen single-ended current/voltage inputs the module is called the B877-111.}

B875-111 field connections

When configuring the B875-111 for eight differential current inputs, note the channels that will receive these inputs. Current inputs are selected by placing a jumper on the field connector between the positive voltage input and the current input terminal for the appropriate channel. For example, if channel 2 is to receive a current input, a jumper must be made between terminal \#7 (CH2) and terminal \#6 (Current Input CH2), as shown on the following illustration.
The following illustration represents the simplified schematic diagram for the B875111 module.
B875-111 Analog Input Module, Current Input Example Drawing


Note: DIP switch accessibility
DIP switches accessible through the side cover are not used in differential mode and should be left in the factory-installed voltage input positions.

Note: Simultaneous current and voltage inputs can exist under the following conditions:
- \(1-5 \mathrm{~V}\) and \(4-20 \mathrm{~mA}\)
- 0-5 V and 0-20 mA
- 5 and 20 mA

Connect field-side wiring to proper pins on the field connector. Voltage inputs do not require a jumper on the field connector. Refer to the illustration showing the typical field circuit connections, below.

Note: Open-circuit voltage inputs may drift either positive or negatively. If opencircuit detection is required, a current input should be used. When using voltage inputs, an open circuit can be detected if a large-value resistor ( \(2 \mathrm{M} \Omega\) or greater) is placed at the field connector across the positive (+) and negative (-) inputs. The resistor clamps the channel to a small offset voltage ( \(<100 \mathrm{mV}\) ) if the field connections are broken.

Typical Field Circuit Connections with Eight Differential Inputs

(4)

B877-111 Field Connections

Current inputs are selected by setting the DIP switches accessible through the side cover for each channel to receive an input. The DIP switch places a \(250 \Omega\) precision resistor between the positive input and analog returns.
The fifth switch (SW5) on switch bank 4, located on the left side selects the voltage range. The position of this switch must be the same as for module configuration switch SW8, located at the rear of the module. Refer to the label located on the left side of the module, and to the illustration showing the current settings for singleended inputs (B877) below.
Current Settings for Single-Ended Inputs, Diagram (B877)
3 4- POSITION DIP SWITCHES AND 1 5-POSITION DIP SWITCH


Use the following table to determine the functions for each switch.
\begin{tabular}{|c|c|}
\hline Switches & Functions \\
\hline \multirow[t]{3}{*}{Switch Bank 1} & Current Inputs \\
\hline & For Channels 1-4 \\
\hline & SW1-4=Right Side Down \\
\hline \multirow[t]{3}{*}{Switch Bank 2} & Current Inputs \\
\hline & For Channels 5-8 \\
\hline & SW1-4=Right Side Down \\
\hline \multirow[t]{3}{*}{Switch Bank 3} & Current Inputs) \\
\hline & For Channels 9-12 \\
\hline & Sw1-4=Right Side Down \\
\hline \multirow[t]{3}{*}{Switch Bank 4} & Current Input \\
\hline & For Channels 13-16 \\
\hline & SW1-4=Right Side Down \\
\hline \multirow[t]{3}{*}{Switch Bank 5} & Input Ranges \\
\hline & For 10 V ( V or 0-10V): SW5=Left Side Down \\
\hline & For 5 V (All Others): SW5=Right Side Down \\
\hline
\end{tabular}

Note: DIP switch accessibility
DIP switches accessible through the side cover are not used in differential mode and should be left in the factory-installed voltage input positions.

Use the following table to field connect the B77-111 module. Refer to typical field circuit connections, single-ended inputs (B877) diagram, below.
\begin{tabular}{|l|l|}
\hline Step & Action \\
\hline 1 & \begin{tabular}{l} 
Connect field-side wiring to proper pins on field connector when module is configured \\
for sixteen single-ended inputs. \\
Note: Open-circuit voltage inputs may drift either positive or negatively. If open-circuit \\
detection is required, a current input should be used. When using voltage inputs, an \\
open circuit can be detected if a large-value resistor (2 M \(\Omega\) or greater) is placed at the \\
field connector across the positive (+) and negative ( - ) inputs. The resistor clamps the \\
channel to a small offset voltage (<100 mV) if the field connections are broken.
\end{tabular} \\
\hline 2 & Reinstall any module temporarily removed. \\
\hline 3 & \begin{tabular}{l} 
When using key pins (provided with housing shipment), install them above and below \\
housing slot selected for this module's installation.
\end{tabular} \\
\hline 4 & Insert module into housing firmly but carefully, seating edge connector in backplane. \\
\hline 5 & \begin{tabular}{l} 
Secure module to housing using captive slotted mounting screws at top and bottom of \\
module front panel.
\end{tabular} \\
\hline
\end{tabular}

Typical Field Circuit Connections, Single-Ended Inputs (B877) Diagram SIGNAL TERMINALNO.
CASE GROUND
NO CONNECTION
INPUT 1
INPUT 2
INPUT1, 2 RETURN
NO CONNECTION
INPUT 3
IPUT 4
INPUT 3, 4
NO CONNECTION
INPUT 5
INPUT 6
INPUT 5, 6 RETURN
NO CONNECTION
INPUT 7
IPUUT 8
INPUT 7, 8 RETURN
NO CONNECTION
NO CONNECTION
NO CONNECTION


NO CONNECTION NO CONNECTION INPUT 9 INPUT 10
INPUT 9, 10 RETURN NO CONNECTION INPUT 11 INPUT 12
INPUT 11, 12 RETURN NO CONNECTION NO CONNECTION INPUT 14
INPUT 13, 14 RETURN NO CONNECTION INPUT 15 IINPUT 16
INPUT 15, 16 RETURN *VOLTAGE REFERENCE + * Voltage reference CASE GROUND

* FOR REFERENCE ONLY. DO NOT ATTACH FIELD WIRING
(1)ALL RETURNS ARE ELECTRICALLY TIED TOGETHER INSIDE THE MODULE.
(2) JUMPER UNUSED CHANNELS IN PARALLEL WITH A "VALID" INPUT TO AVOID OUT OF RANGE ERRORS. YOU MUST SELECT VOLTAGE MODE FOR THE UNUSED CHANNEL.
(3)WHEN USING SHIELDING FIELD CIRCUIT WIRES, GROUND SHIELD AT ONE END ONLY.

\section*{B875-111 Analog Input, Application Example}

\author{
Setup Configuration Switch Pack \\ The B875-111 can be configured to accept 8 differential or 16 single ended inputs. When selected for 8 differential inputs, the card is called a B875-111. When selected for 16 single ended inputs, the card is called a B877-111. \\ This selection is made by switch 7 on the configuration switch pack found at the rear of the module. SW7 in the left position is equal to 16 inputs, in the right position it is equal to 8 inputs. \\ In addition to selecting the number of inputs, you also select voltage range, output format, polarity, offset and number of samples. Refer to the Installation Instructions and the DIP-switch chart on the left side of the module for details. \\ For a quick start setup, use the following settings to interface a 0 to +10 V input signal. For the following input parameters: \\ - 0-10 V input \\ - 0 to full scale output format \\ - One sample \\ - Eight differential inputs \\ Set the switch settings as follows: \\ - SW1, SW3, SW5, SW7=right \\ - SW2, SW4, SW6, SW8=left
}

Input Type Selection (Voltage or Current)

If configured as a B875 (8 differential inputs), current inputs (4-20mA) are selected by placing a jumper at the field connector between the positive voltage input and the current input terminal for the appropriate channel. Refer to the following illustration. Field Connector Jumper Diagram


If configured as a B877 (16 single ended current inputs), input type is selected by the switches on the left side of the module. There is one switch for each of the 16 inputs. This switch places a 250 ohm precision resistor between the plus input and analog return. External jumpers are not used and must be removed. The left position is equal to voltage input, and the right position is equal to current input.
The fifth switch on switch bank 4 (left side) selects the voltage range for both B875 and B877 operations. This switch must correspond to switch 8 of the configuration switch bank (at rear of module). The left position of SW5 is equal to 10 volts, and the right position is equal to 5 volts. SW8 must be in the same position as SW5. For the 0-10V input signal example, set all the input switches to the left (down or towards the numbers).

I/O Mapping

\section*{Wire Inputs}

If setup for 8 differential inputs, the module type will be a B875 and requires 8 consecutive \(3 x x x x\) binary registers. If setup for 16 single ended inputs, the module type will be a B877 and require 16 consecutive 3xxxx binary registers.

Note: Upon power-up the module's active indicator flashes rapidly showing that communication with the programmable controller has been established but, that the input data being returned is not valid. ( 4000 Hexadecimal is sent to the controller during the initialization time). When module initialization is complete, and valid input data is being transferred, the indicator is either steady on, or flashing slowly when any input is out-of-range.

The B875-111 and B877-111 require a high-density connector, part number AS-8535-000. Refer to the left side of the module for pinouts. Refer to the following illustration.
0-10 V Input Example, Diagram.


\section*{Module Checkout}

The B875-111 and B877-111 will perform an analog to digital conversion on the inputs. The resolution of the analog to digital conversion is dependent upon the input range and output format selected with the configuration switch bank.
Using a Modicon programmer, call up the appropriate registers assigned in the I/O Map. Vary the input signal and check that the register content varies correctly. Refer to the following table for the quick-start example.
\begin{tabular}{|l|l|}
\hline Voltage & Value \\
\hline @ 0 V & \(3 x x x x=001\) (decimal) \\
\hline @ 5 V & \(3 x x x x=3750\) \\
\hline @ 10 V & \(3 x x x x=7500\) \\
\hline @ 11 V & \begin{tabular}{l}
\(3 x x x x>9999\) (decimal)* \\
*The active light indicator should be flashing, indicating the input is out of range.
\end{tabular} \\
\hline
\end{tabular}

\section*{Sample Averaging Input Data}

The output data can be processed by a low-pass digital filter in the module to average out and remove any low-frequency noise in the converted input analog data. The digital filter algorithm is:
\(Y_{n}=Y_{n-1}+\frac{X_{n}-Y_{n-1}}{2 N}\)
where
\(\mathrm{Xn}=\) Current input data sample
\(\mathrm{Yn}=\) New output filter data value
Yn-1 = Previous output filter data value.
The digital filter algorithm approximates a classical exponential response characteristic with both the cut-off frequency, \(\mathrm{F}_{\mathrm{c}}\), and the time constant, \(\mathrm{T}_{\mathrm{c}}\), related to the number of samples to be averaged, N , and the throughput time, T . The " N " is user selected \((8,16,32)\) with DIP-switches. Throughput time,"T", equals 10 ms for the B875-111, and 20ms, for the B877-111.)
\[
\begin{align*}
& \mathrm{T}_{\mathrm{c}}=2 \times \mathrm{N} \times \mathrm{T}  \tag{s}\\
& \mathrm{~F}_{\mathrm{c}}=\frac{1}{2 \times \operatorname{Pi} \times \mathrm{T}_{\mathrm{c}}}=\frac{.08}{\mathrm{~N} \times \mathrm{T}} \tag{Hz}
\end{align*}
\]
where \(\mathrm{Pi}=3.141\)

As with any filter, the user must establish what time constant and cut-off frequency is suitable for the specific application. Below is a reference table that approximates the digital filter characteristics for various user settings.
Digital Filter Approximates (B875-111)
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Throughput \\
Time (T)
\end{tabular} & \begin{tabular}{l} 
Number of \\
Samples (N)
\end{tabular} & \begin{tabular}{l} 
Cut-off \\
Frequency \(\left(\mathbf{F}_{\mathbf{c}}\right)\)
\end{tabular} & Time Constant \(\left(\mathbf{T}_{\mathbf{c}}\right)\) \\
\hline 10 ms & 8 & 1 Hz & 160 ms \\
\hline 10 ms & 16 & 0.5 Hz & 320 ms \\
\hline 10 ms & 32 & 0.25 Hz & 1640 ms \\
\hline
\end{tabular}

Digital Filter Approximates (B877-111)
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Throughput \\
Time (T)
\end{tabular} & \begin{tabular}{l} 
Number of \\
Samples (N)
\end{tabular} & \begin{tabular}{l} 
Cut-off \\
Frequency \(\left(\mathbf{F}_{\mathbf{c}}\right)\)
\end{tabular} & Time Constant \(\left(\mathbf{T}_{\mathbf{c}}\right)\) \\
\hline 20 ms & 8 & 0.5 Hz & 320 ms \\
\hline 20 ms & 16 & 0.25 Hz & 640 ms \\
\hline 20 ms & 32 & 0.125 Hz & 1280 ms \\
\hline
\end{tabular}

Approx. step settling-time to \(63 \%\) of final value \(=1 \times T_{c}\)
Approx. step settling-time to \(99 \%\) of final value \(=4.5 \times \mathrm{T}_{\mathrm{c}}\)
Approx. step settling-time to \(99.9 \%\) of final value \(=6.8 \times T_{c}\)

Note: As the scan time increases, the average response time may decrease as viewed in ladder logic.

Application In many applications, analog signals are provided to operators in units (points, gallons per second, degrees C , feet per minute, etc.) via LED displays, CRT monitors or report printouts. An analog input can be scaled to engineering units. To illustrate the technique, assume that the \(0-10 \mathrm{~V}\) signal in the quick-start example represents a temperature from \(-40-+140^{\circ}\) F. Refer to the following illustration showing the signal to temperature relationship.
Signal to Temperature Relationship Diagram

- What is the engineering unit range? In this example it is \(140-(-40)=180\)
- Divide this number by 7500 using a calculator. \(180 / 7500=.024\)
- Multiply this number by 10,000 to obtain the multiply block constant of 240 .
- Multiply the analog input by 240 . The high-order result register will contain the range.
- Add or subtract the Y intercept (-40 in this example) to obtain the answer.

Scaled Value from Analog Signal, Diagram

(SEE FIRST NOTE BELOW)

Note: The logic shown is used to generate the scaled value in register 40020 from the analog signal in 3001. For example: \(30001=3800 ; 40020=0051^{\circ} \mathrm{F}\)

Note: Only the high-order result of the multiplication is used, and no compensation for round-off is used in this example.

\section*{B875-111 Analog Input, Calibration}

Calibration Tools The analog input module is calibrated at the factory prior to shipment. To ensure the module's accuracy, the trim-pot should be calibrated regularly on a yearly interval. The following tools and materials are needed to calibrate an analog input module:
- A precision digital readout voltmeter with an accuracy of 0.0001 V on a 10 V scale.
- A \(1 / 8\)-inch bit, thin-blade screwdriver.
- A \(1 / 4\)-inch Phillips-head screwdriver.
- An adhesive (such as Loctite or Glyptol) to secure trim-pot adjustment screws.

\section*{Calibration} Procedure

Use the following table to calibrate the module.
\begin{tabular}{|l|l|}
\hline Step & Action \\
\hline 1 & \begin{tabular}{l} 
Remove two screws and label located on front-panel of analog input module to allow \\
access to trim pot. \\
Note: The trim pot adjusts the total magnitude of the range (full scale). Refer to trim- \\
pot location diagram, below.
\end{tabular} \\
\hline 2 & Open analog input module handle to expose connectors and terminals. \\
\hline 3 & \begin{tabular}{l} 
Connect digital voltmeter (DVM) minus lead to voltage reference - (terminal number \\
38) and plus lead to voltage reference + (terminal number 39). Refer to voltmeter \\
connection diagram, below. \\
Note: Field wiring may remain connected during calibration. Five minutes of warm-up \\
is sufficient to attain temperature stability.
\end{tabular} \\
\hline 4 & Adjust reference voltage trim pot for an indication of 4.500 V 0.0001 V. \\
\hline 5 & Secure trim pot in place with adhesive. \\
\hline 6 & \begin{tabular}{l} 
Disconnect voltmeter, return connections to their pre-calibration state, close module \\
handle. Replace front label removed in step 1, above.
\end{tabular} \\
\hline
\end{tabular}

Trim Pot
Trim Pot Location Diagram.
Location Diagram


Voltmeter Voltmeter Connection Diagram.

\section*{Connection}

Diagram.


\section*{B875-111 Analog Input, Quick Reference}
\begin{tabular}{|c|c|}
\hline Overview & \begin{tabular}{l}
To set up the analog input module properly, an eight-position DIP-switch must be set together with SW5 of a five-position DIP switch located on the left side of the module. These switches determines the input range, output format, number of samples to be averaged, and the types of inputs. \\
DIP-Switch Configuration Parameters, Table
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline DIP-Switch Configuration Parameters & \multicolumn{3}{|l|}{Eight-Position Switch} & Five-Position Switch \\
\hline Input Range & SW1 & SW2 & SW8 & SW5 \\
\hline \(5 \mathrm{~V}, 20 \mathrm{~mA}\) & L & L & R & R \\
\hline \(0-5 \mathrm{~V}, 0-20 \mathrm{~mA}\) & R & L & R & R \\
\hline \(1-\mathrm{V}, 4-20 \mathrm{~mA}\) & R & R & R & R \\
\hline 10 V & L & L & L & L \\
\hline 0-10 V & R & L & L & L \\
\hline Output Format & SW3 & SW4 & & \\
\hline Standard (0-4096) & R & R & & \\
\hline Elevated (4096-8192) & L & R & & \\
\hline Variable (0 to full resolution) & R & : & & \\
\hline Decimal (0-10,000) & L & L & & \\
\hline Samples to be Averaged & SW5 & SW6 & & \\
\hline 1 or no averaging & R & R & & \\
\hline 8 & L & R & & \\
\hline 16 & R & L & & \\
\hline 32 & L & L & & \\
\hline Types of Inputs & SW7 & & & \\
\hline 8 Differential & R & & & \\
\hline 16 Single-ended & L & & & \\
\hline
\end{tabular}

For example, assume that the following values are desired: 5 V input; \(0-10,000\) counts output; no averaging; differential inputs. Set the switches as follows:
Module Configuration Switch
SW1-4 = L
SW5-8 = 8

\section*{Switch Bank 4}

SW5 = R

\section*{B875-111 Analog Input, Specifications}

\author{
Specification Table
}

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B875-111 Specifications} \\
\hline \multirow[t]{2}{*}{Analog Inputs/ Module} & I/O mapped as B875-111 & Eight differential \\
\hline & I/O mapped as B877-111 & 16 Single-ended \\
\hline \multirow[t]{8}{*}{Input Ranges} & \multirow[t]{5}{*}{Voltage} & \(1-5 \mathrm{Vdc}\) \\
\hline & & \(0-5 \mathrm{Vdc}\) \\
\hline & & 0-10 V \\
\hline & & -5-+5 V \\
\hline & & -10-+10 V \\
\hline & \multirow[t]{3}{*}{Current} & \(4-20 \mathrm{~mA}\) \\
\hline & & 0-20 mA \\
\hline & & -20-+20 mA \\
\hline \multicolumn{2}{|l|}{Input Analog Filter} & Single pole low pass, with -3 dB cut-off frequency at \(48 \mathrm{~Hz} 10 \%\) \\
\hline \multirow[t]{2}{*}{Input Resistance} & Current Mode & \(250 \Omega, 0.05 \%\) \\
\hline & Voltage Mode & Within range > 10 MW , outside range \(10,000 \Omega\) \\
\hline \multirow[t]{2}{*}{Input Resistance (No power)} & Differential Inputs & 20kS/channel \\
\hline & Single-ended Inputs & \(10 \mathrm{k} \Omega /\) channel \\
\hline \multirow[t]{2}{*}{Input Protection} & \multirow[t]{2}{*}{Normal Mode Common Mode} & 120 V RMS differential input \\
\hline & & 120 V RMS \\
\hline \multirow[t]{2}{*}{Throughput (T)} & eight channels & 10 ms without input sampling \\
\hline & 16 channels & 20 ms without input sampling \\
\hline \multicolumn{2}{|l|}{Over Current Protection} & Up to 30 mA \\
\hline \multicolumn{2}{|l|}{Common Mode Range} & 2 V for \(10 \mathrm{~V}, 7 \mathrm{~V}\) for 5 V \\
\hline \multicolumn{2}{|l|}{Rejection} & -40 dB typical, dc to 60 Hz \\
\hline \multirow[t]{3}{*}{Input Isolation} & Input to OURBUS & 1500 Vac RMS for 1 minute \\
\hline & Input to Case & 1500 Vac RMS for 1 minute \\
\hline & Input to Input & 25 Vac \\
\hline \multicolumn{2}{|l|}{Accuracy} & \(0.1 \%\) absolute accuracy over temperature range \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ B875-111 Specifications } \\
\hline \multirow{4}{|l|}{\begin{tabular}{l} 
Conversion \\
Resolution
\end{tabular}} & All ranges & \(>12\) bits \\
\cline { 2 - 3 } & Bipolar & 1 part in 15,000 \\
\cline { 2 - 3 } & Unipolar & 1 part in 7,500 \\
\cline { 2 - 3 } & Unipolar with offset & 1 part in 6,000 \\
\hline Linearity Error & Nonlinearity & \(0.05 \%\) of full scale over the operating range \\
\hline Repeatability & \begin{tabular}{l}
\(0.006 \%\) of full scale over the operating range \\
\hline
\end{tabular} \\
\hline no averaging \\
no
\end{tabular}

\section*{B875-111 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & WORD (\%IW-3X) & - & \\
\hline Inputs Starting Address & 1 & - & \\
\hline Inputs Ending Address & 8 & - & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l} 
Mapped as 8 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 8 words input \\
\(\%\) IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B877-111 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window
ANALOG 16 CH IN


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & WORD (\%IW-3X) & - & \\
\hline Inputs Starting Address & 1 & - & \\
\hline Inputs Ending Address & 16 & - & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l} 
Mapped as 16 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 16 words input \\
\(\%\) IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B877-111,Terminal Numbering and Output Connections}

Terminal Numbering and Output Connections

The following diagram shows terminal numbering and output connections for the the B877-111 module.


\section*{B875-200 Configurable A/D Input}

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B875-200} Configurable A/D Input module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B875-200 Configurable A/D Input, Overview & 244 \\
\hline B875-200 Configurable A/D Input, Input Pack Insertion & 246 \\
\hline B875-200 Configurable A/D Input, Module Configuration & 247 \\
\hline B875-200 Configurable A/D Input, Field Connections & 250 \\
\hline B875-200 Configurable A/D Input, Calibration & 258 \\
\hline B875-200 Configurable A/D Input, Available Input Packs & 261 \\
\hline B875-200 Configurable A/D Input, Input Pack Simplified Schematics & 265 \\
\hline B875-200 Configurable A/D Input, Specifications & 271 \\
\hline B875-200 Parameter Configuration & 273 \\
\hline
\end{tabular}

\section*{B875-200 Configurable A/D Input, Overview}

> General
> The B875-200 Configurable A/D Input Module converts a variety of signal sources: thermocouple, RTD, strain gauge/load cell, voltage and current input ranges into binary data. When selected for eight channels, the module is displayed in the I/O map as a B875-200; when selected for four channels, it is displayed in the I/O map as a B873-200.
> The module provides the capability to poll a wide array of field devices requiring different signal sources based upon the application selected. Selection may be made from more than 48 available input packs, with any mix per module being acceptable.

Note: Third-party Input Packs
Performance is not guaranteed with third-party 5B type packs. When using thirdparty packs, contact the manufacturer for support.

An eight-position DIP switch is used to select from one to eight input channels per module. In addition, a two-position jumper is used to select either 0,2 , or 4 samples to be averaged per input. Averaging helps reduce the impact of spurious noise on the input.
Some application examples include food processing, press operating, chemical processing, painting, and foundry casting.
The module has four/eight analog inputs and is capable of updates to all eight channels every 4 ms . The 12-bit resolution for all ranges, and the absolute accuracy is dependent on the input pack type. This allows for fast and precise control of the application.

Note: This module requires two slots.

Simplified
Schematic
Diagram


\section*{B875-200 Configurable A/D Input, Input Pack Insertion}

Input Pack Insertion Procedure

Use the following procedure to insert the required input pack.
\begin{tabular}{|l|l|}
\hline Step & Action \\
\hline 1 & Remove channel pull-off tabs that correspond with desired input pack placement. \\
\hline 2 & \begin{tabular}{l} 
Insert input packs into right side of module corresponding to desired channels. Align \\
input pack so that Phillips-head screw is on top and 14 leads are at bottom.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Tighten Phillips-head screw. \\
Note: When using either a AS-5B32001A or AS-5B32002A current input pack, a \\
fusible resistor must also be inserted into the board. The proper fusible resistor \\
(Modicon part \# AS-0418-000) comes with the current input pack. \\
Note: Always insert the fusible resistor before inserting the input pack. If the fusible \\
resistor is rectangular, ensure that the side with two leads is next to the input pack. \\
Note: Never place the fusible resistor between adjacent channels. This can be \\
detected when the fusible resistor hides the CH on the CHANNEL label on the board.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Locate write-on label plate (Modicon part \# AS-157A-000) shipped with module. \\
Ensure that input pack catalog numbers and input register numbers for each input \\
pack installed are clearly identified on label.
\end{tabular} \\
\hline
\end{tabular}

\section*{B875-200 Configurable A/D Input, Module Configuration}

Setting the DIP Switch

Use the following procedure to set the eight-position DIP switch.
\begin{tabular}{|l|l|}
\hline Step & Action \\
\hline 1 & \begin{tabular}{l} 
Locate eight-position DIP switch on rear of module. \\
Note: These DIP switches are used to select the desired number of channels, from \\
\(1-8\).
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Set DIP switches based upon intended application prior to installation. Refer to \\
module configuration DIP switch settings diagram, below, and to label located on left \\
side of analog input module. \\
Note: The analog input module is shipped with channel 1 ON, B873), DIP switch \\
(SW1) set to ON. The module is I/O mapped as a B873 when only channels \(1-4\) are \\
in use. The module is I/O mapped as a B875 when more than 4 channels are in use.
\end{tabular} \\
\hline 3 & Ensure all unused DIP switches are kept to the right. \\
\hline
\end{tabular}

\section*{Configuring Module Configuration DIP Switch Settings, Diagram Settings \\ MODULE CONFIGURATION SWITCH \\ 8-POSITION DIP-SWITCH \\ TOP OF MODULE}

SWITCH TO FUNCTION RELATIONSHIP


SWITCHES
SW1-8

FUNCTIONS
SELECTION OF INPUT CHANNELS FOR CHANNELS 1-8: (B875) SW1-8 = L

FOR CHANNELS 1-4: (B873) SW1-4 = L

CHANNELS/SWITCHES NOT USED. KEEP TO RIGHT

Note: The B873 mode provides a faster throughput. Ensure that the placement of the input packs correspond with the DIP switch settings.

\section*{Sample Averaging Selection}

Use the following table to determine the sample averaging selection.
\begin{tabular}{|l|l|}
\hline Step & Action \\
\hline 1 & \begin{tabular}{l} 
Locate access hole on left side of module. \\
Note: This hole allows access to three leads and a two-position jumper, that selects the \\
number of samples to be averaged per input channel: \(0,2,4\) samples to be averaged.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Select either 0, 2 or 4 samples to be averaged.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Set desired averaging prior to installation. Refer to jumper settings diagram, below, and \\
label located on left side of module. \\
Note: The module is shipped with the jumper set for four samples. \\
Module Configuration DIP Switch Settings, Diagram \\
Jumper located below side access \\
hole determines number of samples \\
to average \\
no average
\end{tabular} \\
Note: Sample averaging helps reduce the impact of serious noise on the input.
\end{tabular}

\section*{B875-200 Configurable A/D Input, Field Connections}

\begin{abstract}
General
The module may be wired to accept the following types of packs: current input type; voltage input type; RTD input type; linear thermocouple input type; strain gauge/load cell input type. These input types and their connections are discussed below. Refer to the diagram showing the typical field circuit connections for current inputs, below. Typical Field Circuit Connections for Current Inputs, Diagram
\end{abstract}


\section*{Low Bandwidth} Current Inputs (AS-5B32)

Note: A precision \(20 \Omega\) fusible resistor must be installed in each current input channel. The fusible resistor is supplied with each \(4-20 \mathrm{~mA}\) or \(0-20 \mathrm{~mA}\) input pack. The B875-200 may be installed in either the sinking or sourcing configuration.

Each channel is floating. Should you need a ground, you may tie one side of field wiring to chassis ground or use shield wiring with shield tied to chassis ground. Refer to note

Select the channels to be used for current input packs. Current inputs are selected by inserting the input pack, together with a fusible resistor beside the pack, for the appropriate channel. Refer to the typical field circuit connections for current inputs diagram, above, while connecting the field-side wiring to the proper pins on the field connector.

Note: All input packs provide \(1500 \mathrm{Vac} / 2500 \mathrm{Vdc}\) isolation from bus to field wiring. Since any floating inputs may be exposed to static charges as high as 15 kV , connect one of the signal input leads to chassis ground either directly or through a resistor in the range of 1 kW -10MW. Use the chassis ground at terminals \(1,2,39\) or 40. If the signal source used with an input has a dc signal path to chassis ground, no additional path is required at the B875 end of the field wiring.

Note: Channels are set independently. Any of the pack types identified above can be intermixed.

Low and Wide Bandwidths (AS-5B30/31 and AS-5B40/41) Voltage Inputs

Note the channels to receive the voltage inputs. Voltage inputs are selected by inserting the input pack for the appropriate channel. Refer to the following drawing, and connect field-side wiring to the proper pins on the field connector. Typical Field Circuit Connections for Voltage Inputs, Diagram

FUNCTION

\section*{TERMINAL NUMBER}

CHASSIS GROUND 1
CHASSIS GROUND CHANNEL \#1 2
VIN HIGH 3
VIN LOW CHANNEL \#1 4
EXCITATION - CHANNEL \#1 5
EXCITATION +
CHANNEL \#1
6

VOLTAGE
SIGNAL
SOURCE

NOTE: VOLTAGE WIDE BANDWIDTH INPUT PACKS ARE SIGNIFICANTLY MORE SENSITIVE TO NOISE ON INPUT LINES. LOW BANDWIDTH PACKS ARE RECOMMENDED FOR GENERAL PURPOSE INPUT VOLTAGE USAGE.

Note: The shield-type shown is recommended. One side of the signal source may be connected to chassis ground when using twisted pair wiring.

Note: Channels are set independently. Any mixture of current, voltage, RTD, linear thermocouple, or strain gauge/load cell may be used as inputs.

RTD (AS-5B34) Inputs

Note the channels designated to receive RTD inputs. RTD inputs are selected by inserting the input pack for the appropriate channel. Refer to the diagram below and connect the field-side wiring to the proper pins on the field connector. Typical Field Circuit connections for RTD Inputs, Diagram

FUNCTION
CHASSIS GROUND CHASSIS GROUND VIN HIGH VIN LOW EXCITATION EXCITATION +

CHASSIS GROUND CHASSIS GROUND VIN HIGH VIN LOW EXCITATION EXCITATION +


TERMINAL NUMBER

CHANNEL \#1
CHANNEL \#1 CHANNEL \#1 CHANNEL \#1


N.C. = NO CONNECTION

FUNCTION
CHASSIS GROUND CHASSIS GROUND VIN HIGH VIN LOW EXCITATION EXCITATION +

4 WIRE RTD


Note: The shield-type shown is recommended. One side of the signal source may be connected to chassis ground when using twisted pair wiring.

Note: Channels are set independently. Any mixture of current, voltage, RTD, linear thermocouple, or strain gauge/load cell may be used as inputs.
\begin{tabular}{ll} 
Linear & \begin{tabular}{l} 
Note the channels designated to receive linear thermocouple inputs. Linear \\
Thermocouple \\
thermocouple inputs are selected by inserting the input pack for the appropriate \\
channel. Refer to the diagram below and connect the field-side wiring to the proper
\end{tabular} \\
(AS-5B47) & \begin{tabular}{l} 
pins on the field connector.
\end{tabular} \\
& Typical Field Circuit Connections for Linear Thermocouple Inputs, Diagram
\end{tabular}


NOTE: THERMOCOUPLE MUST BE OF THE TYPE DESIGNATED BY THE DASH NUMBER OF THE AS-5B47 INPUT PACK IN USE. COLD JUNCTION COMPENSATION IS DONE BY A TEMPERATURE SENSOR LOCATED IMMEDIATELY BEHIND THE CONNECTOR BLOCK.

Note: The shield-type shown is recommended. One side of the signal source may be connected to chassis ground when using twisted pair wiring.

Note: Channels are set independently. Any mixture of current, voltage, RTD, linear thermocouple, or strain gauge/load cell may be used as inputs.

Strain Gauge/
Load Cell, 0-+5 V Output (AS5B38)

Note the channels designated to receive strain gauge/load cell inputs. Strain gauge/ load cell inputs are selected by inserting the input pack for the appropriate channel. Refer to the diagram below and connect the field-side wiring to the proper pins on the field connector.
Typical Field Circuit Connections for Strain Gauge/Load cell Inputs
HALF BRIDGE CONNECTION
FUNCTION
CHASSIS GROUND CHASSIS GROUND VIN HIGH VIN LOW EXCITATION EXCITATION +

TERMINAL NUMBER

CHANNEL \#1 CHANNEL \#1 CHANNEL \#1 CHANNEL \#1


FUNCTION
CHASSIS GROUND CHASSIS GROUND VIN HIGH VIN LOW EXCITATION EXCITATION +

FULL BRIDGE CONNECTION
TERMINAL NUMBER

CHANNEL \#1 CHANNEL \#1 CHANNEL \#1 CHANNEL \#1


NOTE: CONNECTION MUST BE SUCH THAT STRAIN IN NORMAL DIRECTION OF APPLICATION RESULTS IN A POSITIVE OUTPUT VOLTAGE APPLIED TO VIN HIGH. WIRING TO PINS 5 AND 6 MAY BE REVERSED IF OUTPUT IS NEGATIVE.

Note: The shield-type shown is recommended. One side of the signal source may be connected to chassis ground when using twisted pair wiring.

Note: Channels are set independently. Any mixture of current, voltage, RTD, linear thermocouple, or strain gauge/load cell may be used as inputs.
\begin{tabular}{l} 
Securing the \\
Use the following procedure to secure the module. \\
Module \\
\(\qquad\)\begin{tabular}{|l|l|}
\hline Step & Action \\
\hline 1 & Reinstall any module temporarily removed \\
\hline 2 & \begin{tabular}{l} 
When using key pins (provided with housing shipment), install them above and below \\
housing slot selected.
\end{tabular} \\
\hline 3 & Carefully insert module into housing firmly, seating edge connector in backplane. \\
\hline 4 & \begin{tabular}{l} 
Secure module to housing using captive slotted mounting screws at top and bottom of \\
module's front panel.
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Locate write-on label plate (Modicon Part No. AS-157A-000). Write input pack catalog \\
numbers and input register numbers for each installed input pack.
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
Insert write-on label plate on right side of installed module. Using two standard screws \\
supplied, tighten them into upper and lower portions of housing slot as shown in \\
following diagram.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}.


Note: Ensure that all input packs are removed prior to returning module to Modicon for repair.

\section*{B875-200 Configurable A/D Input, Calibration}

\begin{abstract}
General
The analog input module is calibrated at the factory prior to shipment. To ensure the module's accuracy, the trim-pot should be calibrated regularly on a yearly interval. The following tools and materials are needed to calibrate a configurable A/D input module:
\end{abstract}
- A precision digital readout voltmeter with an accuracy of 0.0001 V on a 10 V scale.
- A \(1 / 8\)-inch bit, thin-blade screwdriver.
- A 1/4-inch Phillips-head screwdriver.

Note: Calibration is not recommended for Analog Current, Low Bandwidth, 4-20 mA (AS-5B32001A) type input packs because of their reduced accuracy

Calibration of a given channel involves calibration of all eight channels of this module. There is no provision to calibrate a particular channel. Therefore, calibration can be performed with any one channel with any type of input pack. Calibration does require the calibration signals to pass through an input pack.

Note: Improper Calibration
If the particular input pack used in calibration is out of calibration, then all B875 modules calibrated with this input pack will be improperly calibrated.

Location of Trim Pot, Diagram


Use the following procedure to calibrate the module. The input pack used in this procedure is used only as an example. A five-minute warm-up time is recommended prior to calibration.
\begin{tabular}{|r|l|}
\hline Step & Action \\
\hline \(\mathbf{1}\) & \begin{tabular}{l} 
To access both trim pots, remove two screws and label located on front panel of \\
module, as shown on location of trim-pot diagram, above. \\
Note: The top trim-pot adjusts the total magnitude of the range (full scale). The bottom \\
trim-pot adjusts the zero offset scale.
\end{tabular} \\
\hline 2 & Open module handle to expose connectors and terminals. \\
\hline 3 & \begin{tabular}{l} 
Install an input pack in any channel, and connect an appropriate signal source to that \\
channel. Refer to voltmeter connections diagram, below.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Apply input signal to selected channel which represents zero signal (zero volts when \\
using Analog, V input pack, Low Bandwidth, 0 to +10V (AS--5B31003A). On \\
programming panel observe input from B875 for selected channel. Adjust zero cal \\
control (R29) as required to read 0000.
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Apply input signal that results in output between 80 to 90\% of full scale. Use 9.375 V \\
if calibrating with an Analog, V input pack, Low Bandwidth, 0 to +10V (AS-- \\
5B31003A). Resultant reading should be set for 0F00 Hex, or 3840 decimal with full \\
scale calibration control (R57).
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
Repeat previous two steps until readings are correct at both zero and near-full-scale \\
points.
\end{tabular} \\
\hline \(\mathbf{7}\) & \begin{tabular}{l} 
After calibration is complete, disconnect voltmeter, return connections to their original \\
state, close module handle, and replace front label that covers trim-pot.
\end{tabular} \\
\hline
\end{tabular}

\section*{Voltmeter Connections Diagram}

FUNCTION

\section*{CHASSIS GROUND} CHASSIS GROUND VIN HIGH VIN LOW EXCITATION EXCITATION +

Valter Connections Diagram

CHANNEL \#1 CHANNEL \#1
CHANNEL \#1
CHANNEL \#1


\section*{B875-200 Configurable A/D Input, Available Input Packs}

General The module accepts up to eight input packs of any mix. Six categories are available - Voltage, low bandwidth
- Current, low bandwidth
- RTD
- Strain gauge
- Voltage, wide bandwidth
- Linear thermocouple

Refer to the following tables for the desired input range, output range, and part number required for the intended application.

Note: 5B type third party packs
When using third party packs, contact the manufacturer for support.

Note: Input packs are issued as revision level A's, denoted by the last item of the part number, for example, (AS-5B30001A). Changes will be noted by higher revision levels.

Note: The usable output range for all AS-5BXX input packs is \(0-+5 \mathrm{~V}\) when used with this module.

Low Bandwidth (4 kHz) Analog Voltage Input Packs

The following table presents the part numbers and input ranges for the available low bandwidth analog voltage input packs.
\begin{tabular}{|l|l|}
\hline Part Number & Input Range \\
\hline AS-5B30001A & \(0-10 \mathrm{mV}\) \\
\hline AS-5B30002A & \(0-50 \mathrm{mV}\) \\
\hline AS-5B30003A & \(0-100 \mathrm{mV}\) \\
\hline AS-5B30004A & \(-10-+10 \mathrm{mV}\) \\
\hline AS-5B30005A & \(-50-+50 \mathrm{mV}\) \\
\hline AS-5B30006A & \(-100-+100 \mathrm{mV}\) \\
\hline AS-5B31001A & \(0-1 \mathrm{~V}\) \\
\hline AS-5B31002A & \(0-5 \mathrm{~V}\) \\
\hline AS-5B31003A & \(0-+10 \mathrm{~V}\) \\
\hline AS-5B31004A & \(-1-+1 \mathrm{~V}\) \\
\hline AS-5B31005A & \(-5-+5 \mathrm{~V}\) \\
\hline AS-5B31006A & \(-10-+10 \mathrm{~V}\) \\
\hline
\end{tabular}

Low Bandwidth ( 4 kHz ) Analog Current Input Packs

The following table presents the part numbers and input ranges for the available low bandwidth analog current input packs.
\begin{tabular}{|l|l|}
\hline Part Number & Input Range \\
\hline AS-5B32001A & \(4-20 \mathrm{~mA}\) \\
\hline AS-5B32002A & \(0-20 \mathrm{~mA}\) \\
\hline
\end{tabular}

Note: Each current input pack ( \(4-20 \mathrm{~mA}\) ) comes with a fusible resistor that must be inserted in addition to the input pack.

\section*{Low bandwidth} (4k Hz) RTD Input Packs

The following table presents the part numbers, types, and input ranges for the available low bandwidth RTD input packs.
\begin{tabular}{|l|l|l|}
\hline Part Number & Type & Input Range \\
\hline AS-5B34P01A & \(100 \Omega \mathrm{Pt}\) & \(-100-+100^{\circ} \mathrm{C}\left(-148-+212^{\circ} \mathrm{F}\right.\) \\
\hline AS-5B34P02A & \(100 \Omega \mathrm{Pt}\) & \(0-100^{\circ} \mathrm{C}\left(32-212^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B34P03A & \(100 \Omega \mathrm{Pt}\) & \(0-200^{\circ} \mathrm{C}\left(32-392^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B34P04A & \(100 \Omega \mathrm{Pt}\) & \(0-600^{\circ} \mathrm{C}\left(32-1112^{\circ} \mathrm{F}\right.\) \\
\hline AS-5B34C01A & \(100 \Omega \mathrm{Cu} \mathrm{@} 0^{\circ} \mathrm{C}\) & \(0-120^{\circ} \mathrm{C}\left(32-248^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B34C02A & \(100 \Omega \mathrm{Cu} \mathrm{@} 25^{\circ} \mathrm{C}\) & \(0-120^{\circ} \mathrm{C}\left(32-248^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B34N01A & \(120 \Omega \mathrm{Ni}\) & \(0-300^{\circ} \mathrm{C}\left(32-572^{\circ} \mathrm{F}\right)\) \\
\hline
\end{tabular}

Wide Bandwidth ( 10 kHz ) Strain Gauge/Load Cell Input Packs

The following table presents the part numbers and input ranges for the available wide bandwidth strain gauge/load cell input packs.
\begin{tabular}{|l|l|}
\hline Part Number & Input Range \\
\hline AS-5B38002A & \(3 \mathrm{mV} / \mathrm{V}\), Full Bridge \\
\hline AS-5B38004A & \(3 \mathrm{mV} / \mathrm{V}\), Half Bridge \\
\hline AS-5B38005A & \(2 \mathrm{mV} / \mathrm{V}\), Full Bridge \\
\hline
\end{tabular}

Note: Isolated strain gauge input to 10 kHz bandwidth, all have 10.0 V excitation for bridges with resistance range of 300 W to 10 kW .

Wide Bandwidth ( 10 kHz ) Analog Voltage Input Packs

The following table presents the part numbers and input ranges for the available wide bandwidth analog voltage input packs.
\begin{tabular}{|l|l|}
\hline Part Number & Input Range \\
\hline AS-5B40001A & \(0-10 \mathrm{mV}\) \\
\hline AS-5B40002A & \(0-50 \mathrm{mV}\) \\
\hline AS-5B40003A & \(0-100 \mathrm{mV}\) \\
\hline AS-5B40004A & \(-10-+10 \mathrm{mV}\) \\
\hline AS-5B40005A & \(-50-+50 \mathrm{mV}\) \\
\hline AS-5B40006A & \(-100-+100 \mathrm{mV}\) \\
\hline AS-5B41001A & \(0-1 \mathrm{~V}\) \\
\hline AS-5B41002A & \(0-5 \mathrm{~V}\) \\
\hline AS-5B41003A & \(0-10 \mathrm{~V}\) \\
\hline AS-5B41004A & \(-1-+1 \mathrm{~V}\) \\
\hline AS-5B41005A & \(-5-+5 \mathrm{~V}\) \\
\hline AS-5B41006A & \(-10-+10 \mathrm{~V}\) \\
\hline
\end{tabular}

Note: Wide bandwidth input packs are only used for high-speed applications. They are more susceptible to external noise levels, and require careful routing and shielding of input signal leads.

The following table presents the part numbers, types, and input ranges for the available linear thermocouple input packs.
\begin{tabular}{|l|l|l|}
\hline Part Number & Type & Input Range \\
\hline AS-5B47J01A & J & \(0-760^{\circ} \mathrm{C}\left(32-1400^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B47J02A & J & \(-100-+300^{\circ} \mathrm{C}\left(-148-572^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B47J03A & J & \(0-500^{\circ} \mathrm{C}\left(32-932^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B47K04A & K & \(0-1000^{\circ} \mathrm{C}\left(32-1832^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B47K05A & K & \(0-500^{\circ} \mathrm{C}\left(32-932^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B47T06A & T & \(-100-+400^{\circ} \mathrm{C}\left(-148-752^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B47T07A & T & \(0-200^{\circ} \mathrm{C}\left(32-392^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B47E08A & E & \(0-1000^{\circ} \mathrm{C}\left(32-1832^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B47R09A & R & \(500-1750^{\circ} \mathrm{C}\left(932-3182^{\circ} \mathrm{F}\right)\) \\
\hline AS-5B47S10A & S & \(500-1750^{\circ} \mathrm{C}\left(932-3182^{\circ} \mathrm{F}\right.\) \\
\hline AS-5B47B11A & B & \(500-1800^{\circ} \mathrm{C}\left(932-3272^{\circ} \mathrm{F}\right)\) \\
\hline
\end{tabular}

\section*{B875-200 Configurable A/D Input, Input Pack Simplified Schematics}

Typical Analog mV (5B30) Simplified Schematic

Simplified schematic diagrams for all types of input packs are shown below. The typical analog mV (5B30) schematic diagram is shown below.

TRANSFORMER COUPLED ISOLATION AMPLIFIER


Typical Analog Current (5B32)
Simplified
Schematic
Diagram


Typical RTD \(\quad\) The typical RTD (5B34) schematic diagram is shown below.
(5B34) Simplified
Schematic
Diagram


\section*{Typical Strain gauge/Load Cell (5B38) Simplified Schematic \\ Diagram}


Typical Analog The typical analog voltage (5B40 and 5B41) schematic diagram is shown below. Voltage (5B40 and 5B41) Simplified Schematic Diagram


Typical Linear Thermocouple (5B47) Simplified Schematic Diagram


\section*{B875-200 Configurable A/D Input, Specifications}

\section*{Specification The following tables provides the specifications for the unit. Table}


The following table provides the resistance values for the voltage mode for the indicated input pack numbers.
\begin{tabular}{|l|l|l|}
\hline Pack Number & In Range & Power Off and/or Over Range \\
\hline AS-5B30 & \(5 \mathrm{M} \Omega\) & \(40 \mathrm{k} \Omega\) \\
\hline AS-5B31 & \(650 \mathrm{k} \Omega\) & \(650 \mathrm{k} \Omega\) \\
\hline AS-5B40 & \(200 \mathrm{M} \Omega\) & \(40 \mathrm{k} \Omega\) \\
\hline AS-5B41 & \(650 \mathrm{k} \Omega\) & \(650 \mathrm{k} \Omega\) \\
\hline
\end{tabular}

The following table provides data on out-of-range errors (flags)
\begin{tabular}{|l|l|}
\hline Data Flagged & Description \\
\hline Not Ready & Bit 14 set high \((4000 \mathrm{Hex})\) \\
\hline Over Range & Bit 15 set high ( \(800 \mathrm{xHex}, \mathrm{x}=1-4\) bits over range) \\
\hline Under Range & Bits 14 and 15 set high (c00xHex, \(\mathrm{x}=1-4\) bits under range) \\
\hline Normal Data & Bits 14 and 15 are low, normal data range is \(0-4095\) (0-1FFF Hex) \\
\hline
\end{tabular}

The following table provides data on the accuracy of the input packs.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Pack & Calibration Accuracy at \(25^{\circ} \mathrm{C}\) & *Accuracy Over Temp \(0-60^{\circ} \mathrm{C}\) & Nonlinearity & Gain Drift*** & Offset Drift*** \\
\hline \begin{tabular}{l}
AS-5B30 \\
AS-5B40 \\
Unipolar
\end{tabular} & 0.15 & 0.73 & 0.05 & . \(007 \% /{ }^{\circ} \mathrm{C}\) & .008\%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Bipolar & 0.20 & 0.78 & 0.05 & . \(007 \% /{ }^{\circ} \mathrm{C}\) & . \(008 \% /{ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
AS-5B31 \\
AS-5B41 \\
Unipolar
\end{tabular} & 0.15 & 0.62 & 0.05 & . \(01 \% /{ }^{\circ} \mathrm{C}\) & .002\%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Bipolar & 0.20 & 0.67 & 0.05 & . \(01 \% /{ }^{\circ} \mathrm{C}\) & .002\%/ \({ }^{\circ} \mathrm{C}\) \\
\hline AS-5B32 & 0.25 & 0.70 & 0.05 & . \(01 \% /{ }^{\circ} \mathrm{C}\) & . \(001 \% /{ }^{\circ} \mathrm{C}\) \\
\hline AS-5B47 & \(0.11^{\circ} \mathrm{C}^{\star *}\) & \(0.42^{\circ} \mathrm{C}\) & 0.05 & . \(007 \% /{ }^{\circ} \mathrm{C}\) & \(1 \mathrm{~V} \% /{ }^{\circ} \mathrm{C}\) typ \\
\hline AS-5B38 & 0.15 & 0.80 & 0.05 & . \(010 \% /{ }^{\circ} \mathrm{C}\) & \(1 \mathrm{~V} \% /{ }^{\circ} \mathrm{C}\) typ \\
\hline AS-5B34 & 0.15 & 2.0 & 0.05 & . \(01 \% /{ }^{\circ} \mathrm{C}\) & . \(04 \% /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{6}{|l|}{Unless noted all entries are\% of full scale.} \\
\hline \multicolumn{6}{|l|}{*Accuracy = Calibration + gain drift + offset + non linearity for the range 0-60 \({ }^{\circ} \mathrm{C}\) ambient.} \\
\hline \multicolumn{6}{|l|}{\({ }^{* *}\) Calibration accuracy for types \(\mathrm{J}, \mathrm{K}\), T. For types R \& \(\mathrm{S}=4^{\circ} \mathrm{C}\). For type \(\mathrm{B}=6^{\circ} \mathrm{C}\).} \\
\hline \multicolumn{6}{|l|}{***Both gain and offset drift are from \(25^{\circ} \mathrm{C}\).} \\
\hline
\end{tabular}

\section*{B875-200 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & WORD (\%IW-3X) & - & \\
\hline Inputs Starting Address & 1 & - & \\
\hline Inputs Ending Address & 8 & - & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l} 
Mapped as 8 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 8 words input \\
\(\%\) IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{800 Series Discrete I/O Modules}

\section*{Introduction}
\(\begin{array}{ll}\text { At a Glance } & \begin{array}{l}\text { This part provides a detailed description of the } 800 \text { Series discrete I/O modules. It } \\ \text { includes technical data and wiring information for each module. }\end{array}\end{array}\)

What's in this This part contains the following chapters: Part?
\begin{tabular}{|c|c|c|}
\hline Chapter & Chapter Name & Page \\
\hline 15 & B802-008 115 Vac Output & 279 \\
\hline 16 & B803-008 115 Vac Input & 285 \\
\hline 17 & B804-116 115 Vac Output & 291 \\
\hline 18 & B804-14848 Vac Output & 297 \\
\hline 19 & B805-016 115 Vac Input & 303 \\
\hline 20 & B806-032 115 Vac Output & 309 \\
\hline 21 & B806-124 24 Vac Output & 317 \\
\hline 22 & B807-132 115 Vac Input & 323 \\
\hline 23 & B808-016 230 Vac Output & 331 \\
\hline 24 & B809-016 230 Vac Input & 337 \\
\hline 25 & B810-008 115 Vac Isolated Output & 343 \\
\hline 26 & B814-108 Relay Output & 349 \\
\hline 27 & B816 Isolated Output & 355 \\
\hline 28 & B817-116 and B817-216 115/230 Vac Isolated Input & 357 \\
\hline 29 & B818 24 Vac Output & 365 \\
\hline 30 & B819-232 230 Vac Input & 371 \\
\hline 31 & B820-008 10-60 Vdc Output & 377 \\
\hline 32 & B821-108 10-60 Vdc Input (True High) & 383 \\
\hline 33 & B824-016 24 Vdc Output (True High) & 389 \\
\hline 34 & B825-016 24 Vdc Input (True High) & 395 \\
\hline 35 & B826-032 24 Vdc Output (True High) & 401 \\
\hline 36 & B827-032 24 Vdc Input (True High) & 403 \\
\hline 37 & B828-016 5 V TTL Output & 409 \\
\hline 38 & B829-116 Fast Response 5 V TTL Input & 415 \\
\hline 39 & B832-016 24 Vdc Output (True Low) & 421 \\
\hline 40 & B833-016 24 Vdc Input (True Low) & 427 \\
\hline 41 & B836-016 12-250 Vdc Isolated Output & 433 \\
\hline 42 & B837-016 24 Vac/Vdc Input (True High) & 439 \\
\hline 43 & B838-032 24 Vdc Output (True High) & 445 \\
\hline 44 & B840-108 Relay Output & 451 \\
\hline 45 & B842-008 Reed Relay Output & 457 \\
\hline 46 & B849-016 48 Vac/Vdc Input (True High) & 463 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Chapter & Chapter Name & Page \\
\hline 47 & B853-016 115 Vac/125 Vdc Input (True High) & 469 \\
\hline 48 & \(855-016\) Intrinsically Safe Input & 475 \\
\hline 49 & B862-001 Register Output & 485 \\
\hline 50 & B863-032 Monitored 24 Vdc Input & 493 \\
\hline 51 & B863-132 24 Vdc Input & 499 \\
\hline 52 & B864-001 Register Output & 507 \\
\hline 53 & B865-001 Register Input & 515 \\
\hline 54 & B868-001 Register Output & 525 \\
\hline 55 & B869-002 Register Input & 535 \\
\hline 56 & B881-001 Latched 24 Vdc Input & 545 \\
\hline 57 & B881-508 125 Vdc Output & 553 \\
\hline 58 & B882-032 24 Vdc Diagnostic Output and B818 20-28 Vac Discrete Output & 559 \\
\hline 59 & B882-116 24 Vdc Output & 571 \\
\hline
\end{tabular}

\section*{B802-008 115 Vac Output}

\section*{15}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B802-008 115 Vac Output module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B802-008 115 Vac Output, Overview & 280 \\
\hline B802-008 115 Vac Output, Field Connections & 281 \\
\hline B802-008 48 Vac Output, Specifications & 282 \\
\hline B802-008 Parameter Configuration & 283 \\
\hline
\end{tabular}

\section*{B802-008 115 Vac Output, Overview}

\section*{General Characteristics}

The B802-008 115 Vac Output Module converts logic signals used within the PLC into eight independent 115 Vac outputs. Each output is capable of driving a relay, pilot lamp, motor starter, solenoid, or any other load up to 2.0 A . The B802-008 is capable of handling a total continuous current of 12 A . The module uses triac switches to control loads connected to an external power source. These switches are designed to withstand the high surge currents typical of industrial loads.

\section*{Simplified Schematic \\ The module's eight outputs are separated into four groups of two outputs each. An LED indicator lights when an output is ON. \\ Following is a simplified schematic of the B802-008 115 Vac output module.}


\section*{B802-008 115 Vac Output, Field Connections}

\section*{Overview}

Terminal
Numbering and
Output
Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B802-008 module.


\section*{B802-008 48 Vac Output, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B802-008 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Points
\end{tabular}}} & 115 Vac Output \\
\hline & & 8 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Operating Voltage \\
Number of Groups
\end{tabular}}} & 80-130 Vac continuous /47-63 Hz \\
\hline & & 4 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 2 \\
\hline \multirow[t]{2}{*}{ON Current} & Maximum/point & 2 A continuous \\
\hline & Maximum/module & 12.0 A \\
\hline \multicolumn{2}{|l|}{Surge Current} & \(50 \mathrm{~A}(\mathrm{max}) 1\) cycle/circuit \\
\hline \multicolumn{2}{|l|}{ON Voltage Drop} & 1.3 V @ 2.0 A \\
\hline \multirow[t]{2}{*}{Maximum OFF} & Leakage Current & 3 mA @ 115 Vac \\
\hline & Maximum ON Current & 50 mA @ 115 Vac \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 8.3 ms @ 60 Hz \\
\hline & ON \(\rightarrow\) OFF & 8.3 ms @ 60 Hz \\
\hline \multirow[t]{2}{*}{dv/dt} & & \(100 \mathrm{~V} / \mathrm{s}\) \\
\hline & Commutating & \(5 \mathrm{~V} / \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Power Required} & +5V & 76 mA \\
\hline & +4.3 V & 240 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & One/group, Type 3 AG, 6 A (normal blow) \\
\hline
\end{tabular}
\(\qquad\)

\section*{B802-008 Parameter Configuration}

\section*{Parameter and} Default Values

Parameter Configuration Window


酮 \(1: 140\) XBP. \(3:\) B802
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline Outputs Starting Address & 1 & 1 & \\
\hline Outputs Ending Address & 8 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & Mapped as 8 bits output & \begin{tabular}{l} 
Mapped as 8 bits output \\
\%M \\
\\
\\
\(0 x\)
\end{tabular} \\
\begin{tabular}{l} 
or \\
Mapped as 1 register output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 1 word output \\
\%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B803-008 115 Vac Input}

\section*{16}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of theB803-008 115 Vac Input module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B803-008 115 Vac Input, Overview & 286 \\
\hline B803-008 115 Vac Input, Field Connections & 287 \\
\hline B803-008 115 Vac Input, Specifications & 288 \\
\hline B803-008 Parameter Configuration & 289 \\
\hline
\end{tabular}

\section*{B803-008 115 Vac Input, Overview}

\section*{General Characteristics}

The B803-008 115 Vac Input Module senses and converts switched input signals into logic voltage levels used by the PLC into 8 independent 115 Vac outputs. The module allows for up to eight independently sensed inputs. These inputs can be received from push buttons, limit and proximity switches, as well as other 115 Vac sources.

Simplified Schematic


\section*{B803-008 115 Vac Input, Field Connections}

\section*{Overview}

Terminal
Numbering and Input
Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B803-008 module.


\section*{B803-008 115 Vac Input, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B803-008 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Points
\end{tabular}}} & 115 Vac Isolated Input \\
\hline & & 8 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Operating Range Voltage Number of Groups}} & 80-130 Vac/47-63 Hz \\
\hline & & 8 \\
\hline \multicolumn{2}{|l|}{Inputs/group} & 1 \\
\hline \multirow[t]{2}{*}{Maximum Input Voltage} & Continuous & 130 Vac \\
\hline & Surge & 220 Vac for 1 cycle \\
\hline \multicolumn{2}{|l|}{ON Condition} & 80-130 Vac (source impedance < \(1 \mathrm{k} \Omega\) \\
\hline & Threshold Voltage & 6015 V RMS \\
\hline OFF Condition & Maximum/Module & \(0-35 \mathrm{Vac}\) (source impedance) \(=0 \Omega 0\) 130 Vac (source impedance \(\geq 40 \mathrm{k} \Omega\) \\
\hline \multicolumn{2}{|l|}{ON Current} & 7 mA (typical @ 115 Vac ) \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 6 ms (4 ms typical) \\
\hline & ON \(\rightarrow\) OFF & 18 ms (12 ms typical) \\
\hline \multirow[t]{3}{*}{Power Required} & +5V & 27 mA \\
\hline & +4.3V & 1 mA \\
\hline & -5V & 2 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline
\end{tabular}

\section*{B803-008 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


酸 \(1: 140\) XBP . \(3:\) B803
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline Inputs Starting Address & 1 & 1 & \\
\hline Inputs Ending Address & 8 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

\section*{Mapping Parameter References}
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l}
Mapped as 8 bits input \\
1x \\
or \\
Mapped as 1 register input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l}
Mapped as 8 bits input \% Ix \\
or \\
Mapped as 1 word input \%IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B804-116 115 Vac Output}

\section*{17}

\section*{At a Glance}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B804-116 115 Vac Output, Overview & 292 \\
\hline B804-116 115 Vac Output, Field Connections & 293 \\
\hline B804-116 48 Vac Output, Specifications & 294 \\
\hline B804-116 Parameter Configuration & 295 \\
\hline
\end{tabular}

\section*{B804-116 115 Vac Output, Overview}

\section*{General Characteristics}

Simplified Schematic

The B804-116 115 Vac Output Module converts logic signals used in the PLC into 16 independent 115 Vac outputs. Each output is capable of driving a relay, pilot lamp, motor starter, solenoid, or any other load up to 2.0 A .
The B804-116 is capable of handling a total continuous current of \(6 \mathrm{~A} / \mathrm{group}\) of eight points and \(12 \mathrm{~A} /\) module. The module uses triac switches to control loads connected to an external power source. These switches are designed to withstand the high surge currents typical of industrial loads.

Following is a simplified schematic of the B804-116 115 Vac Output Module.


The module's 16 outputs are separated into two groups of eight outputs each.

\section*{B804-116 115 Vac Output, Field Connections}

\section*{Overview}

Terminal
Numbering and Output Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B804-116 module.


\section*{B804-116 48 Vac Output, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B804-116 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Points
\end{tabular}}} & 115 Vac Output \\
\hline & & 16 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Operating Voltage \\
Number of Groups
\end{tabular}}} & 80-130 Vac continuous / \(47-63 \mathrm{~Hz}\) \\
\hline & & 2 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 8 \\
\hline \multirow[t]{6}{*}{ON Current} & Maximum/point & 2 A continuous \\
\hline & Surge Current & 50 A 1 cycle \\
\hline & Maximum/group & 6 A \\
\hline & Maximum/module & 12.0 A \\
\hline & Minimum Load Current & 25 mA (B804-116) \\
\hline & Minimum Load Current & 50 mA (B804-016) \\
\hline \multicolumn{2}{|l|}{Voltage Drop} & 1.5 V @ 2 A\()\) \\
\hline Maximum OFF & Leakage Current & 3 mA @ 115 Vac \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 8.3 ms @ 60 Hz \\
\hline & ON \(\rightarrow\) OFF & 8.3 ms @ 60 Hz \\
\hline \multicolumn{2}{|l|}{dv/dt} & \(100 \mathrm{~V} / \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Power Required} & \(+5 \mathrm{~V}\) & 76 mA \\
\hline & +4.3 V & 480 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & Type 3AB, 8 A (normal blow) \\
\hline
\end{tabular}

\section*{B804-116 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l} 
Mapped as 16 bits output \\
1 x \\
or \\
Mapped as 1 register output \\
4 x
\end{tabular} & \begin{tabular}{l} 
Mapped as 16 bits output \\
\%Mx \\
or \\
Mapped as 1 word output \\
\(\% M W x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B804-148 48 Vac Output}

\section*{18}

\section*{At a Glance}
\begin{tabular}{l|l|l|} 
Purpose & \multicolumn{1}{l}{\begin{tabular}{l} 
This chapter describes the functional and physical characteristics of the B804-148 \\
48 Vac Output Module.
\end{tabular}} \\
\cline { 2 - 3 } \begin{tabular}{l} 
What's in this \\
Chapter?
\end{tabular} & This chapter contains the following topics: & Page \\
\hline Topic & 298 \\
\hline B804-148 48 Vac Output, Overview & 299 \\
\hline B804-148 48 Vac Output, Field Connections & 300 \\
\hline B804-148 48 Vac Output, Specifications & 301 \\
\hline B804-148 Parameter Configuration & \\
\hline
\end{tabular}

\section*{B804-148 48 Vac Output, Overview}

\section*{General Characteristics}

Simplified Schematic

The B804-148 48 Vac Output Module converts logic signals used within the PLC into 16 independent 48 Vac outputs. Each output is capable of driving a relay, pilot lamp, motor starter, solenoid, or any other load up to 2.0 A. The module has 16 outputs, divided into two groups of eight discrete points.

Following is a simplified schematic of the B804-148 48 Vac Output Module.


\section*{B804-148 48 Vac Output, Field Connections}

\section*{Overview}

Terminal
Numbering and Output Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B804-148 module.


\section*{B804-148 48 Vac Output, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B804-148 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Points
\end{tabular}}} & 48 Vac Output \\
\hline & & 16 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Operating Voltage Number of Groups}} & 40-56 Vac continuous /47-63 Hz \\
\hline & & 2 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 8 \\
\hline \multirow[t]{4}{*}{ON Current} & Maximum/point & 2 A continuous \\
\hline & Surge Current & 50 A 1 cycle \\
\hline & Maximum/group & 6 A \\
\hline & Maximum/module & 12.0 A \\
\hline \multicolumn{2}{|l|}{Voltage Drop} & 1.5 V @ 2 A\()\) \\
\hline \multicolumn{2}{|l|}{Leakage Current} & 3 mA \\
\hline \multicolumn{2}{|l|}{Maximum OFF} & 3 mA \\
\hline \multicolumn{2}{|l|}{Minimum Load Current} & 25 mA RMS \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & 8.3 ms @ 60 Hz \\
\hline & \(\mathrm{ON} \rightarrow\) OFF & 8.3 ms @ 60 Hz \\
\hline \multirow[t]{2}{*}{\(\mathrm{dv} / \mathrm{dt}\)} & & \(100 \mathrm{~V} / \mathrm{s}\) \\
\hline & Commutating & \(5 \mathrm{~V} / \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 76 mA \\
\hline & +4.3V & 480 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & One/group, 8 A replaceable \\
\hline
\end{tabular}

\section*{B804-148 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window


\section*{Module Configuration}
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline Outputs Starting Address & 1 & 1 & \\
\hline Outputs Ending Address & 16 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

\section*{Mapping Parameter References}
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & Mapped as 16 bits output & \begin{tabular}{l} 
Mapped as 16 bits output \\
\%Mx \\
or
\end{tabular} \\
& \begin{tabular}{l} 
or \\
Mapped as 1 register output \\
4 x
\end{tabular} & \begin{tabular}{l} 
Mapped as 1 word output \\
\(\% M W x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B805-016 115 Vac Input}

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B805-016 115 Vac Input Module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B805-016 115 Vac Input, Overview & 304 \\
\hline B805-016 115 Vac Input, Field Connections & 305 \\
\hline B805-016 115 Vac Input, Specifications & 306 \\
\hline B805-016 Parameter Configuration & 307 \\
\hline
\end{tabular}

\section*{B805-016 115 Vac Input, Overview}

\section*{General Characteristics}

The B805-016 115 Vac Input Module senses and converts switched input signals into logic voltage levels used by the PLC. The module allows for up to 16 inputs in 2 groups of 8 . These inputs can be received from push buttons, limit and proximity switches, as well as other 115 Vac sources.

\section*{Simplified Schematic \\ Following is a simplified schematic of the B805-016 115 Vac Input Module.}


\section*{B805-016 115 Vac Input, Field Connections}

\section*{Overview}

\section*{Terminal \\ Numbering and Input \\ Connections}

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B805-016 module.


\section*{B805-016 115 Vac Input, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B805-016 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Points
\end{tabular}}} & 115 Vac Input \\
\hline & & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 80-130 Vac continuous /47-63 Hz \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Inputs/group} & 8 \\
\hline \multirow[t]{2}{*}{Maximum Input Voltage} & Continuous & 130 Vac \\
\hline & Surge & 220 Vac for 1 cycle \\
\hline \multirow[t]{2}{*}{ON Conditions} & \multirow[b]{2}{*}{Threshold Voltage} & 80-130 Vac (source impedance) <1 k \\
\hline & & 6015 V RMS \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{OFF Condition}} & \(0-35 \mathrm{Vac}\) (source impedance) \(=1 \mathrm{k} \Omega\) \\
\hline & & \(0-130 \mathrm{Vac}\) (source impedance) \(\geq 40 \mathrm{k} \Omega\) \\
\hline \multicolumn{2}{|l|}{ON Current} & 6 mA (typical) @ 115 Vac \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{OFF Current}} & 1.8 mA (max) @ 35 Vac RMS leakage for input sensors \\
\hline & & 3.0 mA (typical) @ 60 Vac RMS \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 6 ms (4 ms typical) \\
\hline & ON \(\rightarrow\) OFF & 18 ms (11 ms typical) \\
\hline \multirow[t]{3}{*}{Power Required} & \(+5 \mathrm{~V}\) & 40 mA \\
\hline & +4.3 V & 1 mA \\
\hline & -5 V & 14 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline
\end{tabular}

\section*{B805-016 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits input & Mapped as 16 bits input \\
Type & 1 x & \%Ix \\
& or & \begin{tabular}{l} 
or \\
\\
\\
\\
\\
Mapped as 1 word input \\
\(3 x\)
\end{tabular} \\
\hline Mapped as 1 word input \\
\(\%\) \%IWx
\end{tabular}

\section*{B806-032 115 Vac Output}

20

\section*{At a Glance}
\(\begin{array}{ll}\text { Purpose } & \text { This chapter describes the functional and physical characteristics of the B806-032 } \\ 115 \text { Vac Output Module. }\end{array}\)

What's in this This chapter contains the following topics:

\section*{Chapter?}
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B806-032 115 Vac Output, Overview & 310 \\
\hline B806-032 115 Vac Output, Field Connections & 312 \\
\hline B806-032 115 Vac Output, Fusing Guidelines & 313 \\
\hline B806-032 115 Vac Output, Specifications & 314 \\
\hline B806-032 Parameter Configuration & 315 \\
\hline
\end{tabular}

\section*{B806-032 115 Vac Output, Overview}
General
The B806-032 115 Vac Output Module has 32 outputs. The outputs can serve 120
Characteristics
Vac voltage relays, motor starters, solenoids, pilot lamps, valves, and other loads rated up to 1.0 A . The outputs are divided into two groups of 16 discrete points.

Simplified
Following is a simplified schematic of the B806-032 115 Vac Output Module.
Schematic


\section*{B806-032 115 Vac Output, Field Connections}

\section*{Overview}

\section*{Terminal \\ Numbering and \\ Output \\ Connections}

\section*{B806-032 115 Vac Output, Fusing Guidelines}

Fuse Ratings For reasons of safety and equipment performance, Schneider Electric recommends external fusing on each individual output point according to the following rating:
\begin{tabular}{|l|l|l|}
\hline Fuse Rating & Fuse Value & Example Type \\
\hline Very Fast Acting & 2 A & Littelfuse 3 AB \\
\hline
\end{tabular}

Note: A minimum voltage rating of 250 V is required for safe fuse operation. Voltage ratings can be found along with current ratings on the fuse end cap.

\section*{Note: Observe fusing guidelines}

Failure either to fuse these output modules or to follow the recommended fuse ratings could cause unpredictable results in module performance.

\section*{B806-032 115 Vac Output, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B806-032 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Points
\end{tabular}}} & 115 Vac Output \\
\hline & & 32 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Operating Voltage \\
Number of Groups
\end{tabular}}} & 80-130 Vac continuous /47-63 Hz \\
\hline & & 2 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 16 \\
\hline \multirow[t]{5}{*}{ON Current} & Maximum/point & 1 A continuous \\
\hline & Surge Current & 15 A 1 cycle \\
\hline & Maximum/group & 8 A \\
\hline & Maximum/module & 16 A \\
\hline & Minimum Load Current & 5 mA \\
\hline \multicolumn{2}{|l|}{Voltage Drop} & 1.5 V RMS (maximum) \\
\hline Maximum OFF & Leakage Current & 2 mA @ 115 Vac \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 8.3 ms @ 60 Hz \\
\hline & ON \(\rightarrow\) OFF & 8.3 ms @ 60 Hz \\
\hline \multirow[t]{2}{*}{dv/dt} & & \(600 \mathrm{~V} / \mathrm{s}\) \\
\hline & Commutating & \(5 \mathrm{~V} / \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Power Required} & +5V & 210 mA \\
\hline & +4.3V & 1 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

Note: The B806-032 is powered by a standard 24 Vac field power supply.

\section*{B806-032 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & Mapped as 32 bits output & \begin{tabular}{l} 
Mapped as 32 bits output \\
\(\% M x\) \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
Mapped as 2 registers output \\
\(4 x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & \begin{tabular}{l} 
Mapped as 2 words output \\
\(\% M W x\)
\end{tabular} \\
\hline
\end{tabular}

\section*{B806-124 24 Vac Output}

\section*{At a Glance}

Purpose This chapter describes the functional and physical characteristics of the B806-124 24 Vac Output Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B806-124 24 Vac Output, Overview & 318 \\
\hline B806-124 24 Vac Output, Field Connections & 320 \\
\hline B806-124 24 Vac Output, Specifications & 321 \\
\hline B806-124 Parameter Configuration & 322 \\
\hline
\end{tabular}

\section*{B806-124 24 Vac Output, Overview}

\author{
General The B806-124 Output Module has 32 outputs. The outputs can serve 24 Vac Characteristics voltage relays, motor starters, solenoids, pilot lamps, valves, and other loads rated up to 1.0 A . The outputs are divided into two groups of 16 discrete points.
}

Simplified Schematic

Following is a simplified schematic of the B806-124 24 Vac Output Module.


\section*{B806-124 24 Vac Output, Field Connections}

\section*{Overview}

\section*{Terminal Numbering and Output \\ Connections}


\section*{B806-124 24 Vac Output, Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B806-124 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Points
\end{tabular}}} & 24 Vac Output \\
\hline & & 32 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Operating Voltage}} & 20-28 Vac continuous /47-63 Hz \\
\hline & & 32 Vac RMS max for 10 s \\
\hline & & 42 Vac RMS max for 1 cycle \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 16 \\
\hline \multirow[t]{5}{*}{ON Current} & \multirow[t]{2}{*}{Maximum/point Surge Current} & 1 A continuous \\
\hline & & 15 A 1 cycle \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Maximum/group \\
Maximum/module
\end{tabular}} & 8 A \\
\hline & & 16 A \\
\hline & Minimum Load Current & 5 mA \\
\hline \multicolumn{2}{|l|}{Voltage Drop} & 1.5 V (max) \\
\hline Maximum OFF & Leakage Current & 2 mA \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & 8.3 ms @ 60 Hz \\
\hline & \(\mathrm{ON} \rightarrow\) OFF & 8.3 ms @ 60 Hz \\
\hline \multirow[t]{2}{*}{dv/dt} & \multirow[b]{2}{*}{Commutating} & \(600 \mathrm{~V} / \mathrm{s}\) \\
\hline & & \(5 \mathrm{~V} / \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 210 mA \\
\hline & +4.3V & 1 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

Note: The B806-124 is powered by a standard 24 Vac field power supply.

\section*{B806-124 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 32 bits output & \begin{tabular}{l} 
Mapped as 32 bits output \\
Type
\end{tabular} \\
\hline \begin{tabular}{l} 
\%xx \\
or \\
Mapped as 2 registers output \\
4x
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 2 words output \\
\(\% ~ M W x ~\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B807-132 115 Vac Input}

\section*{22}

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B807-132 115 Vac Input Module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B807-132 115 Vac Input, Overview & 324 \\
\hline B807-132 115 Vac Input, Field Connections & 326 \\
\hline B807-132 115 Vac Input, Specifications & 329 \\
\hline B807-132 Parameter Configuration & 330 \\
\hline
\end{tabular}

\section*{B807-132 115 Vac Input, Overview}

\begin{abstract}
General The B807-132 115 Vac Input Module senses and converts switched input signals
Characteristics into logic voltage levels used by the PLC. These inputs can be received from push buttons, limit and proximity switches, as well as other 115 Vac sources.
\end{abstract}

Simplified Schematic


Note: When using Binary and BCD inputs remember that input 1 is the MSB and input 32 is the LSB.

\section*{B807-132 115 Vac Input, Field Connections}

\section*{Overview User connections are made to a standard screw terminal strip.The rigid wiring} system permits module insertion or removal without disturbing the wiring.

\section*{Terminal Numbering and Input Connections}


Note: Pins 1, 20, 21, and 40 have no internal connections.

Note: The module can operate from \(47-63 \mathrm{~Hz}\). However, its use with proximity switches is recommended only at 60 Hz nominal line frequency. Leakage current through switching devices connected to the module may cause a false ON condition.

Input Current-to-Frequency Relationship

The following illustration is a plot of the input current versus frequency.

A. MAXIMUM ALLOWABLE SINEWAVE LEAKAGE CURRENT (FROM EXTERNAL DEVICE)

TO GUARANTEE AN OFF CONDITION (CALCULATED AT 35 Vac ) AT B807 TERMINALS

C. MAXIMUM MODULE INPUT CURRENT AT 130 Vac

\section*{B807-132 115 Vac Input, Specifications}

Specification
Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B807-132 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Points
\end{tabular}}} & 115 Vac Input \\
\hline & & 32 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 80-130 Vac continuous / \(47-63 \mathrm{~Hz}\) \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 4 \\
\hline \multicolumn{2}{|l|}{Inputs/group} & 8 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Maximum Input Voltage}} & 150 Vac for 10 s \\
\hline & & 200 Vac for 1 cycle \\
\hline \multicolumn{2}{|l|}{ON Condition} & 80-130 Vac (source impedance) <1 k \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{OFF Condition}} & \(0-35 \mathrm{Vac}\) (source impedance) \(=0 \Omega\) \\
\hline & & \(0-130 \mathrm{Vac}\) (source impedance) \(\geq 90 \mathrm{k} \Omega\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ON Current}} & 3.7 mA minimum @ \(80 \mathrm{Vac}, 50 \mathrm{~Hz}\) input* \\
\hline & & 6.4 mA minimum @ \(115 \mathrm{Vac}, 60 \mathrm{~Hz}\) input* \\
\hline \multicolumn{2}{|l|}{Maximum External to Module Leakage Current} & 1.8 mA to guarantee an OFF condition @ 60 Hz \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & 6 ms \\
\hline & ON \(\rightarrow\) OFF & 35 ms \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 80 mA \\
\hline & +4.3 V & 2 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}
*Minimum input on current at stated voltage and frequency with less than \(10 \Omega\) source impedance.

Note: All voltage and current specifications assume a sine waveform and are specified as RMS voltage and current.

Note: Input LED brightness is a function of line voltage applied.

\section*{B807-132 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 32 bits input & Mapped as 32 bits input \\
Type & 1 x \\
or \\
& \begin{tabular}{l} 
Mapped as 2 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 2 words input \\
\(\% / W x\)
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B808-016 230 Vac Output}

\section*{23}

\section*{At a Glance}
\begin{tabular}{l|l|l|} 
Purpose & \begin{tabular}{l} 
This chapter describes the functional and physical characteristics of the B808-016 \\
230 Vac Output Module.
\end{tabular} \\
\begin{tabular}{l|l|} 
What's in this \\
Chapter?
\end{tabular} & This chapter contains the following topics: & Page \\
\hline Topic & 332 \\
\hline B808-016 230 Vac Output, Overview & 333 \\
\hline B808-016 230 Vac Output, Field Connections & 334 \\
\hline B808-016 230 Vac Output, Specifications & 335 \\
\hline B808-016 Parameter Configuration & \\
\hline
\end{tabular}

\section*{B808-016 230 Vac Output, Overview}

\section*{General Characteristics}

Simplified
Schematic
The B808-016 230 Vac Output Module converts logic signals used within the PLC into 16 independent 230 Vac outputs. Each output is capable of driving a relay, pilot lamp, motor starter, solenoid, or any other load up to 2.0 A. The B808 is capable of 6 A per group of eight and handling 12 A per module.
The module uses triac switches to control loads connected to an external power source. These switches are designed to withstand the high surge currents typical of industrial loads.

Schematic
Following is a simplified schematic of the B808-016 230 Vac Output Module.


\section*{B808-016 230 Vac Output, Field Connections}

\section*{Overview}

Terminal
Numbering and

\section*{Output}

Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B808-016 module.


\section*{B808-016 230 Vac Output, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B808-016 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Points
\end{tabular}}} & 230 Vac Output \\
\hline & & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 180-260 Vac/47-63 Hz \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 8 \\
\hline \multirow[t]{4}{*}{ON Current} & Maximum/point & 2 A continuous \\
\hline & Surge Current & 50 A (max) 1 cycle \\
\hline & Maximum/group & 6 A \\
\hline & Maximum/module & 12 A \\
\hline \multicolumn{2}{|l|}{ON Voltage Drop} & 1.3 V @ 2.0 A \\
\hline Maximum OFF & Leakage Current & 8 mA @ 230 Vac \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 8.3 mA @ 60 Hz \\
\hline & ON \(\rightarrow\) OFF & 8.3 ms @ 60 Hz \\
\hline \multicolumn{2}{|l|}{Applied dv/dt} & \(100 \mathrm{~V} / \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 76 mA \\
\hline & +4.3 V & 480 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & 1/group, Type 3 AB, 8 A (normal blow) \\
\hline
\end{tabular}

\section*{B808-016 Parameter Configuration}

Parameter and
Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\(\left.\)\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits output & Mapped as 16 bits output \\
Type & 1 x & \(\% \mathrm{Mx}\) \\
& or & Mapped as 1 register output \\
& 4 x
\end{tabular} \begin{tabular}{l} 
Mapped as 1 word output \\
\(\% M W x\)
\end{tabular} \right\rvert\, \begin{tabular}{lll|}
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B809-016 230 Vac Input}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B809-016} 230 Vac Input Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B809-016 230 Vac Input, Overview & 338 \\
\hline B809-016 230 Vac Input, Field Connections & 339 \\
\hline B809-016 230 Vac Input, Specifications & 340 \\
\hline B809-016 Parameter Configuration & 341 \\
\hline
\end{tabular}

\section*{B809-016 230 Vac Input, Overview}

\section*{General Characteristics}

The B809-016 230 Vac Input Module senses and converts switched input signals into logic voltage levels used by the PLC. The module allows for up to 16 inputs in two groups of eight. These inputs can be received from push buttons, limit and proximity switches, as well as other 230 Vac sources.

Simplified Schematic

Following is a simplified schematic of the B809-016 230 Vac Input Module.


\section*{B809-016 230 Vac Input, Field Connections}

\section*{Overview}

Terminal
Numbering and Input
Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B809-016 module.


\section*{B809-016 230 Vac Input, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B809-016 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Number of Points
\end{tabular}}} & 230 Vac Input \\
\hline & & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 160-260 Vac/47-63 Hz \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 8 \\
\hline \multirow[t]{3}{*}{Maximum Input Voltage} & \multirow[t]{2}{*}{Continuous} & 260 Vac \\
\hline & & 300 Vac for 10 s \\
\hline & Surge & 400 Vac for 1 cycle \\
\hline \multicolumn{2}{|l|}{ON Conditions} & 160-260 Vac (source impedance) \(=1 \mathrm{k} \Omega\) \\
\hline \multicolumn{2}{|l|}{ON Current} & 8.5 mA (typical) @ 230 Vac \\
\hline \multicolumn{2}{|l|}{OFF Conditions} & \(0-90 \mathrm{Vac}\) (source impedance) \(=0 \Omega\) \\
\hline \multicolumn{2}{|l|}{Peak inrush for 260 VRMS (Rs=0) applied @ peak} & 1.7 A max \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & \(5 \mathrm{~ms} \mathrm{(3} \mathrm{~ms} \mathrm{typical)}\) \\
\hline & \(\mathrm{ON} \rightarrow\) OFF & \(18 \mathrm{~ms} \mathrm{(12} \mathrm{~ms} \mathrm{typical}\) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 42 mA \\
\hline & +4.3 V & 1 mA \\
\hline & -5 V & 15 mA \\
\hline \multirow[t]{2}{*}{Dimensions} & Space Required & 1 slot \\
\hline & Weight & \(2.38 \mathrm{lbs}(1.08 \mathrm{~kg})\) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline
\end{tabular}

Note: The B809-016 input module is electrically compatible with the B808-016 output module.

\section*{B809-016 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window


孟 \(1: 140\) XBP. \(3:\) B809
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits input & \begin{tabular}{l} 
Mapped as 16 bits input \\
Type \\
1 x
\end{tabular} \\
& \begin{tabular}{l} 
Mr \\
Mapped as 1 register input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 1 word input \\
\(\%\) IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B810-008 115 Vac Isolated Output}

25

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B810-008 115 Vac Output Module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B810-008 115 Vac Output, Overview & 344 \\
\hline B810-008 115 Vac Output, Field Connections & 345 \\
\hline B810-008 115 Vac Isolated Output, Specifications & 346 \\
\hline B810-008 Parameter Configuration & 347 \\
\hline
\end{tabular}

\section*{B810-008 115 Vac Output, Overview}

\section*{General Characteristics}

The B810-008 115 Vac Output Module converts logic signals used within the PLC into eight independent 115 Vac outputs. Each output is capable of driving a relay, pilot lamp, motor starter, solenoid, or any other load up to 2.0 A. The B810-008 is capable of \(6 \mathrm{~A} /\) group of eight and handling \(12 \mathrm{~A} /\) module. The module uses eight triac switches to control loads connected to an external power source. These switches are designed to withstand the high surge currents typical of industrial loads.

Following is a simplified schematic of the B810-008 115 Vac Output Module.

Simplified Schematic


Zero-cross threshold switching is incorporated into each output circuit. Upon controller command, outputs switch ON at the first line voltage zero-crossing, and switch OFF at the first load current zero-crossing.
Output status indicators are provided for each output circuit. These neon indicators will be ON when a load is connected and the output is ON , or when there is no connected load. These indicators are isolated from the triac output and require a separate lamp supply which is fused at \(1 / 4 \mathrm{~A}\). Blown fuse indicators are also provided for each output circuit. These indicators light (ON) when the corresponding fuse has blown.

\section*{B810-008 115 Vac Output, Field Connections}

\section*{Overview}

Terminal Numbering and Output
Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the B810-008 module.


\section*{B810-008 115 Vac Isolated Output, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B810-008 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 115 Vac isolated output \\
\hline \multicolumn{2}{|l|}{Number of Points} & 8 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 80-130 Vac continuous/47-63 Hz \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 8 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 1 \\
\hline \multirow[t]{5}{*}{On Current} & Maximum/point & 2 A continuous \\
\hline & Maximum/module & 12 A \\
\hline & Maximum/group & 2 A \\
\hline & Surge Current & 50 A (max) 1 cycle \\
\hline & Minimum Load Current & 50 mA \\
\hline Maximum OFF & Leakage Current & 3 mA @ 115 Vac \\
\hline \multicolumn{2}{|l|}{ON Voltage Drop} & 1.3 V @ 2.0A max \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Surge Voltage}} & 150 Vac for 10 s \\
\hline & & 200 Vac for 1 cycle \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & 8.3 ms @ 60 Hz \\
\hline & ON \(\rightarrow\) OFF & 8.3 ms @ 60 Hz ) \\
\hline \multicolumn{2}{|l|}{dv/dt} & \(100 \mathrm{~V} / \mathrm{s}\) \\
\hline & Commutating & \(5 \mathrm{~V} / \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Power Required} & \(+5 \mathrm{~V}\) & 50 mA \\
\hline & +4.3V & 240 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & One/group, Type 3 AG, 3 A (normal blow) \\
\hline
\end{tabular}

\section*{B810-008 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 8 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l}
Mapped as 8 bits output \\
0x \\
or \\
Mapped as 1 register output 4 x
\end{tabular} & Mapped as 8 bits output \%Mx or Mapped as 1 word output \%MWx \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B814-108 Relay Output}

26

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B814-108 Relay Output Module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B814-108 Relay Output, Overview & 350 \\
\hline B814-108 Relay Output, Configuration & 351 \\
\hline B814-108 Relay Output, Field Connections & 352 \\
\hline 814-108 Relay Output, Specifications & 353 \\
\hline B814-108 Parameter Configuration & 354 \\
\hline
\end{tabular}

\section*{B814-108 Relay Output, Overview}

\section*{General Characteristics}

The B814-108 Relay Output Module converts signals from the PLC to eight independent relay outputs. Each output is capable of driving a relay, pilot lamp, motor starter, solenoid, or any other load up to 5.0 A. Each of the eight outputs is electrically isolated from the I/O bus and from the other seven outputs by the relay coil. The module is designed to withstand the high surge currents typical of industrial loads.
The module is user-configurable as to setting for normally-open or normally-closed operation of the relays as described below, and is compatible with other Modicon input modules. Assuming a normally-open configuration, when the relay coil is energized, the relay contacts will conduct current from output A terminal to output B terminal (see the following figure).

Simplified Following is a simplified schematic of the B814-108 Relay Output Module. Schematic


\section*{B814-108 Relay Output, Configuration}

\section*{Configuration} Overview

The B814 is initially shipped with all eight channels jumpered for the normally-open configuration. You may optionally wire any of the channels for normally-closed operation if desired. This is done by transferring a wire jumper from one tab to another on the printed circuit board. Refer to the label on the side of the module. The following table shows the user configuration wire/tab designations for the unit.
\begin{tabular}{|l|l|l|l|l|l|}
\hline Channel & N.O. & N.C. & Channel & N.O. & N.C. \\
\hline 1 & W1-E2 & W1-E1 & 5 & W5-E10 & W5-E9 \\
\hline 2 & W2-E4 & W2-E3 & 6 & W6-E12 & W6-E11 \\
\hline 3 & W3-E6 & W3-E5 & 7 & W7-E14 & W7-E13 \\
\hline 4 & W4-E8 & W4-E7 & 8 & W8-E16 & W8-E15 \\
\hline
\end{tabular}

\section*{B814-108 Relay Output, Field Connections}

\section*{Overview \\ Terminal \\ Numbering and \\ Output \\ Connections}

OUTPUT 1A OUTPUT 1B OUTPUT 2A OUTPUT 2B NOT USED OUTPUT 3A OUTPUT 3B OUTPUT 4A OUTPUT 4B NOT USED


Note: Since each output is isolated from the remaining outputs, separate power sources can be used for each load. Each output can be wired for current source or current sink operations.

Note: It is possible to have the ACTIVE indicator lit with one or more output channels working improperly.

\section*{814-108 Relay Output, Specifications}

\section*{Specification Table}

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{814-108 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & Relay (NO/NC) output, \\
\hline \multicolumn{2}{|l|}{Number of Points} & 8 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & \(0-30 \mathrm{Vdc} 0-240 \mathrm{Vac} / 47-63 \mathrm{~Hz}\) \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 8 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 1 \\
\hline \multirow[t]{3}{*}{ON Current} & \multirow[t]{2}{*}{Maximum/point} & \(5 \mathrm{~A} @ 30 \mathrm{Vdc} / 120 \mathrm{Vac}\) \\
\hline & & 4 A @ 240 Vac \\
\hline & Maximum/module & 40 A @ \(30 \mathrm{Vdc} / 120 \mathrm{Vac}\) \\
\hline \multirow[t]{2}{*}{Maximum Load Current} & Carrying (unswitched) & 3 A max) \\
\hline & Switching & 2.0 max (0.3 A @ 300 Vdc \\
\hline \multicolumn{2}{|l|}{Switching Capability} & 960 VA maximum, or 150 W dc maximum \\
\hline \multicolumn{2}{|l|}{Contact Resistance} & \(<300 \mathrm{~m} \Omega\) (including fuse, wire, connectors, and contacts) \\
\hline OFF State & Leakage Current & . 5 mA (typical) @ \(240 \mathrm{Vac} / 60 \mathrm{~Hz}\) \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 15 ms (6 ms typical) \\
\hline & ON \(\rightarrow\) OFF & 15 ms (6 ms typical) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 107 mA \\
\hline & +4.3 V & 800 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{Relay Life Rating} & 100,000 operations, and 50,000 operations with inductive loads @ \(25^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & 1 / output, 7 A \\
\hline
\end{tabular}

Note: For 48 Vdc operation, the maximum load is 1 A .

\section*{B814-108 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 8 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 8 bits output & \begin{tabular}{l} 
Mapped as 8 bits output \\
Type
\end{tabular} \\
& \begin{tabular}{l} 
\%x \\
or \\
Mapped as 1 register output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 1 word output \\
\(\% M W x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B816 Isolated Output}

\section*{B816 Parameter Configuration}

\section*{Parameter and} Default Values

Parameter Configuration Window

\begin{tabular}{|l|l|l|l|}
\hline Name & Default Value & Options & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & - & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 16 & - & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

\title{
B817-116 and B817-216 115/230 \\ Vac Isolated Input
}

28

\section*{At a Glance}

Purpose This chapter describes the functional and physical characteristics of the B817-116 and B817-216 115/230 Vac Isolated Input Modules.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Overview & 358 \\
\hline B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Field Connections & 359 \\
\hline B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Specifications & 362 \\
\hline B817-116 and B817-216 Parameter Configuration & 363 \\
\hline
\end{tabular}

\section*{B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Overview}

\section*{General Characteristics}

The B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input Modules sense OFF and ON input voltages from its field circuitry, converting them to dc logic levels used in the logic program by a Modicon PLC.
The module's 16 input circuits are individually isolated from one another. As each input circuit uses a neutral return wire, none has a definite relationship to system ground unless established in the user's field circuitry. The module's logic circuitry is shielded from radiated signals or interference originating in the field, and its field inputs are optically isolated from the system logic.

Following is a simplified schematic of the B817-116 (115 Vac) and B817-216 (230
Simplified
Schematic

Vac) Isolated Input Modules.


When the voltage exceeds the threshold circuits voltage requirement, current will flow through the threshold switch and opto-isolator via the precision attenuator and the bridge rectifier. The output pulses coupled through the isolator are averaged so that a steady state dc voltage representation of the inner circuit's ON-state condition is sensed by the Ourbus chip (OBS) on the logic side of the module.
The Ourbus output register is set to represent the field ON state. As long as the field input status remains true, the module will communicate this status each time it is polled by the PLC.

\section*{B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Field Connections}

Overview
User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Input
Connections
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
INPUT 1 \\
NEUTRAL 1
\end{tabular}} & (1) & & \\
\hline & (2) & INPUT 9 & (1) \\
\hline \multirow[t]{2}{*}{INPUT 2} & (3) & NEUTRAL 9 & (2) \\
\hline & & INPUT 10 & (23) \\
\hline NEUTRAL 2 & (4) & & \\
\hline INPUT 3 & (5) & NEUTRAL 10 & (2) \\
\hline NEUTRAL 3 & (6) & INPUT 11 & (25) \\
\hline INPUT 4 & (7) & NEUTRAL 11 & (26) \\
\hline \multirow[t]{2}{*}{NEUTRAL 4} & (8) & INPUT 12 & (27) \\
\hline & (3) & & \\
\hline NC & (9) & NEUTRAL 12 & (28) \\
\hline NC & (10) & NC & (2) \\
\hline NC & (11) & NC & (3) \\
\hline NC & (12) & NC & (3) \\
\hline INPUT 5 & (13) & NC & (3) \\
\hline NEUTRAL 5 & (14) & INPUT 13 & (3) \\
\hline INPUT 6 & (15) & NEUTRAL 13 & (34) \\
\hline \multirow[t]{2}{*}{NEUTRAL 6} & & INPUT 14 & (35) \\
\hline & (b) & & \\
\hline INPUT 7 & (17) & NEUTRAL 14 & (36) \\
\hline NEUTRAL 7 & (18) & & (3) \\
\hline \multirow[t]{2}{*}{INPUT 8} & (19) & & (38) \\
\hline & & INPUT 16 & (39) \\
\hline NEUTRAL 8 & (2) & INPUT 16 & ) \\
\hline & & NEUTRAL 16 & (40) \\
\hline
\end{tabular}

The following figure shows typical circuitry connected to the user side of the B817116 field connector.


The following figure shows typical circuitry connected to the user side of the B817216 field connector.


\section*{B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B817-x16 Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Description}} & 115 Vac isolated input (B817-116) \\
\hline & & 230 Vac isolated input (B817-216) \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 16 \\
\hline \multicolumn{2}{|l|}{Inputs/group} & 1 \\
\hline \multirow[t]{4}{*}{Maximum Input Voltage} & \multirow[t]{2}{*}{Continuous} & \(130 \mathrm{Vac} / 47-63 \mathrm{~Hz}\) (B817-116) \\
\hline & & \(260 \mathrm{Vac} / 47-63 \mathrm{~Hz}\) (B817-216) \\
\hline & \multirow[t]{2}{*}{Surge} & 200 Vac for 1 cycle (B817-116) \\
\hline & & 400 Vac for 1 cycle (B817-216) \\
\hline ON Conditions & B817-116 & \(>80 \mathrm{Vac}\) (source impedance, \(<1 \mathrm{k} \Omega\) \\
\hline & B817-216 & \(>160 \mathrm{Vac}\) (source impedance, \(<1 \mathrm{k} \Omega\) \\
\hline \multirow[t]{4}{*}{OFF Conditions} & \multirow[b]{2}{*}{B817-116} & \(0-35 \mathrm{Vac}\) (source impedance) \(=0 \Omega\) \\
\hline & & \(0-130 \mathrm{Vac}\) (source impedance) \(>40 \mathrm{k} \Omega\) \\
\hline & & \(0-90 \mathrm{Vac}\) (source impedance) \(=0 \Omega\) \\
\hline & B817-216 & \(0-260 \mathrm{Vac}\) (source impedance) \(>80 \mathrm{k} \Omega\) \\
\hline \multirow[t]{2}{*}{Wetting Current} & B817-116 & 04 mA (typical) @ 115 Vac \\
\hline & B817-216 & 8.23 mA (typical) @ 230 Vac \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 6 ms \\
\hline & \(\mathrm{ON} \rightarrow\) OFF & 18 ms \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 25 mA \\
\hline & +4.3 V & 2 mA \\
\hline & -5V & 8 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

\section*{B817-116 and B817-216 Parameter Configuration}

\section*{Parameter and} Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l} 
Reference \\
Type
\end{tabular} & Mapped as 16 bits input & \begin{tabular}{l} 
Mapped as 16 bits input \\
\%Ix \\
or
\end{tabular} \\
& \begin{tabular}{l} 
Mapped as 1 register input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 1 word input \\
\%IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B818 24 Vac Output}

29

\section*{At a Glance}
\(\begin{array}{ll}\text { Purpose } & \text { This chapter describes the functional and physical characteristics of the B818 } \\ 24 \text { Vac Output Module. }\end{array}\)
What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B818-Setting Module DIP Switch & 366 \\
\hline B818 24Vdc Output, Field Connections & 367 \\
\hline B818 24 Vdc (True High) Output, Specifications & 368 \\
\hline B818 Parameter Configuration & 369 \\
\hline
\end{tabular}

\section*{B818-Setting Module DIP Switch}

Switch location and position

Switch Settings

The four position DIP-switch is located on the rear of the module. This switch controls the mode of the module as Bi-directional or Uni-directional.

The following figure presents DIP switch settings for the B872-100 module. Also, refer to the label located on the left side of the module itself.

\section*{4- POSITION DIP- SWITCHES}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{TOP OF MODULE} \\
\hline \(\rightarrow\) & & Not used keep left \\
\hline N & & Not used keep left \\
\hline \(\omega\) & & left \(=\) Uni-Directional / right \(=\) Bi-Directional \\
\hline A & & Not used keep left \\
\hline 0 & 1 & \\
\hline ON & OFF & \\
\hline DOWN & UP & \\
\hline LEFT & RIGHT & \\
\hline
\end{tabular}

Note: Two types of switches may be in use. Toggle up/down or throw left/right

\section*{B818 24Vdc Output, Field Connections}

Terminal Numbering and Output Functions

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows how to field connect the unit.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{Group 1} & Output 1 & (1) & (21) & Output 17 & Group 3 \\
\hline & Output 2 & (2) & (22) & Output 18 & \\
\hline & Output 3 & (3) & (23) & Output 19 & \\
\hline & Output 4 & (4) & (24) & Output 20 & \\
\hline & + 24VDC & (5) & (25) & + 24VDC & \\
\hline & GND & (6) & (26) & GND & \\
\hline & Output 5 & (7) & (27) & Output 21 & \\
\hline & Output 6 & (8) & (28) & Output 22 & \\
\hline & Output 7 & (9) & (29) & Output 23 & \\
\hline & Output 8 & (10) & (30) & Output 24 & Group 4 \\
\hline \multirow[t]{10}{*}{Group 2} & Output 9 & (11) & (31) & Output 25 & \\
\hline & Output 10 & (12) & (32) & Output 26 & \\
\hline & Output 11 & (13) & (33) & Output 27 & \\
\hline & Output 12 & (14) & (34) & Output 28 & \\
\hline & + 24VDC & (15) & (35) & + 24VDC & \\
\hline & GND & (16) & (36) & GND & \\
\hline & Output 13 & (17) & (37) & Output 29 & \\
\hline & Output 14 & (18) & (38) & Output 30 & \\
\hline & Output 15 & (19) & (39) & Output 31 & \\
\hline & Output 16 & (20) & (40) & Output 32 & \\
\hline
\end{tabular}

\section*{B818 24 Vdc (True High) Output, Specifications}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{15}{*}{Specification Table} & \multicolumn{3}{|l|}{The following table provides the specifications for the unit.} \\
\hline & \multicolumn{3}{|l|}{B818 Specifications} \\
\hline & Description & & 24 Vdc output \\
\hline & Type of Operation & & True high \\
\hline & Number of Points & & 32 \\
\hline & Operating Voltage & & 20-28 Vdc \\
\hline & Number of Groups & & 4 \\
\hline & Outputs/group & & 8 \\
\hline & On Current & Maximum/point & 1 A continuous \\
\hline & & Maximum/module & 24 A \\
\hline & & Maximum/group & 6 A \\
\hline & & ON \(\rightarrow\) OFF & 1 ms ) \\
\hline & Power Required & \(+5 \mathrm{~V}\) & 300 mA \\
\hline & & +4.3V & 10 mA \\
\hline & & -5V & 0 mA \\
\hline
\end{tabular}

\section*{B818 Parameter Configuration}

\section*{Parameter and}

Parameter Configuration Window

\section*{Default Values}

\begin{tabular}{|l|l|l|l|}
\hline Name & Default Value & Options & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & - & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 32 & - & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

\section*{B819-232 230 Vac Input}

\section*{30}

\section*{At a Glance}
\begin{tabular}{l|l|l|} 
Purpose & \multicolumn{1}{l}{\begin{tabular}{l} 
This chapter describes the functional and physical characteristics of the B819-232 \\
230 Vac Input Module.
\end{tabular}} \\
\hline
\end{tabular} \begin{tabular}{l} 
What's in this \\
Chapter?
\end{tabular} This chapter contains the following topics: \begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B819-232, 230 Vac Input, Keying and Wiring & 372 \\
\hline B819-232, 32 Point Input, Specifications & 375 \\
\hline B819-232 Parameter Configuration &
\end{tabular}

\section*{B819-232, 230 Vac Input, Keying and Wiring}

Overview

\section*{Terminal \\ Numbering and \\ Output \\ Connections}

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B819-232 module.


Mechanical The following figure shows the keying for the the B819-232 module. Keying


\section*{B819-232, 32 Point Input, Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B819-232 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 230 Vac 32 point input module \\
\hline \multicolumn{2}{|l|}{Number of Points} & 32 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 170-250 Vac \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 4 \\
\hline \multicolumn{2}{|l|}{Inputs per group} & 8 \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 25 mA \\
\hline & +4.3V & 1 mA \\
\hline & -5V & 0 mA \\
\hline \multirow[t]{2}{*}{Visual indicator} & 1 neon light per input & "on" when input is on \\
\hline & 1 "active" indicator & "on" when good communication with PC \\
\hline \multirow[t]{2}{*}{Maximum input voltage} & Continous & 250 Vac \\
\hline & Surge & \begin{tabular}{l}
400 Vac (1cycle), \\
300 Vac (10 sec. max.)
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Transient} & 5/50 ns 1kV peak \\
\hline \multicolumn{2}{|l|}{On Level} & \(\geq 170\) Vac cont. \\
\hline \multicolumn{2}{|l|}{Off Level} & \begin{tabular}{l}
\(<90 \mathrm{Vac}\) with \(0 \Omega\) \\
\(<250\) Vac with \(70 \mathrm{k} \Omega\)
\end{tabular} \\
\hline
\end{tabular}

\section*{B819-232 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 32 bits input & Mapped as 32 bits input \\
Type & \begin{tabular}{l} 
\%Ix \\
or \\
Mapped as 2 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 2 words input \\
\%IW
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B820-008 10-60 Vdc Output}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B820-008} 10-60 Vdc Output Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B820-008 10-60 Vdc Output, Overview & 378 \\
\hline B820-008 10-60 Vdc Output, Field Connections & 379 \\
\hline B820-008 10-60 Vdc Output, Specifications & 380 \\
\hline B820-008 Parameter Configuration & 381 \\
\hline
\end{tabular}

\section*{B820-008 10-60 Vdc Output, Overview}

\section*{General Characteristics}

The B820-008 10-60 Output Module converts logic signals used within the PLC into eight independent \(10-60 \mathrm{Vdc}\) outputs. Each output is capable of driving a relay, pilot lamp, motor starter, solenoid, or any other load up to 2.0 A . The B820-008 is capable of handling a total continuous current of 12 A . The module uses transistor switches to control loads connected to an external power source. These switches are designed to withstand the high surge currents typical of industrial loads.

Simplified
Schematic
Following is a simplified schematic of the B820-008 10-60 Vdc Output Module.


The module's eight outputs are separated into four groups of two outputs each.

\section*{B820-008 10-60 Vdc Output, Field Connections}

\section*{Overview}

Terminal
Numbering and
Output
Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the B820-008 module.
\(\left.\begin{array}{rl}\begin{array}{rl}\text { OUTPUT } 1 \\ \text { OUTPUT } 2\end{array} & \text { (2) } \\ \text { (-) RETURN (GP1) }\end{array}\right)\)

\section*{B820-008 10-60 Vdc Output, Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B820-008 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 10-60 Vdc output \\
\hline \multicolumn{2}{|l|}{Type of Operation} & True high \\
\hline \multicolumn{2}{|l|}{Number of Points} & 8 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 10-60 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 4 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 2 \\
\hline \multirow[t]{4}{*}{On Current} & Maximum/point & 2 A \\
\hline & Maximum/ module & 12 A \\
\hline & Maximum/group & 6 A \\
\hline & Surge Current & \(10 \mathrm{~A} /\) channel max for 10 ms at a repetition rate of \(0.05 \%\) \\
\hline ON State & Voltage Drop & 1.5 Vdc max @ 2 A \\
\hline OFF State & Leakage Current & 5 mA (max) @ 60 Vdc \\
\hline \multicolumn{2}{|l|}{Peak Voltage} & 80 Vdc max for 10 ms at a repetition rate of 0.05\% \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & 1 ms (.1 ms typical) \\
\hline & ON \(\rightarrow\) OFF & 1 ms (.1 ms typical)) \\
\hline \multicolumn{2}{|l|}{dv/dt} & \(200 \mathrm{~V} / \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 90 mA \\
\hline & +4.3V & 80 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & \(10-60 \mathrm{Vdc}, 500 \mathrm{~mA}\) max./group (excluding field load current)) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & One/group, 3 AG, 6 A (normal blow) \\
\hline
\end{tabular}

\section*{B820-008 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 8 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 8 bits output & Mapped as 8 bits output \\
Type & \(0 x\) & \begin{tabular}{l} 
\%Mx \\
or
\end{tabular} \\
& \begin{tabular}{l} 
or \\
Mapped as 1 register output \\
\\
\\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 1 word output \\
\(\% M W x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B821-108 10-60 Vdc Input (True High)}

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B821-108}

What's in this Chapter? \(10-60\) Vdc Input Module (True High).

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B821-108 10-60 Vdc Input (True High), Overview & 384 \\
\hline B821-108 10-60 Vdc Input (True High), Field Connections & 385 \\
\hline B821-108 10-60 Vdc Input (True High), Specifications & 386 \\
\hline B821-108 Parameter Configuration & 388 \\
\hline
\end{tabular}

\section*{B821-108 10-60 Vdc Input (True High), Overview}

\section*{General Characteristics}

The B821-108 10-60 Vdc Input Module (True High) senses and converts switched input signals into logic voltage levels used by the PLC. The module allows for up to eight inputs in four groups of two. Each group shares a common reference voltage supply input. These inputs can be received from push buttons, limit and proximity switches, as well as other \(10-60 \mathrm{Vdc}\) sources.

\section*{Simplified Schematic}

Following is a simplified schematic of the B821-108 10-60 Vdc Input Module (True High).


\section*{B821-108 10-60 Vdc Input (True High), Field Connections}

\section*{Overview}
```

Terminal
Numbering and Input
Connections

```

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B821-108 module.


\section*{B821-108 10-60 Vdc Input (True High), Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ B821-108 Specifications } \\
\hline Description & \(10-60\) Vdc input module \\
\hline Type of Operation & True high \\
\hline Number of Points & 8 \\
\hline Operating Voltage & \(10-60\) Vdc \\
\hline Number of Groups & 4 \\
\hline Inputs/group & 2 \\
\hline On Level & \begin{tabular}{l} 
Input Voltage \\
If the applied input voltage is \(\geq 70 \%\) of the \\
external power supply, the input to the controller \\
is guaranteed to be in an ON logic state. \\
However, to achieve satisfactory margin, the \\
input voltage should be \(75 \%\) of the supply \\
voltage. Once the input to the controller is in the \\
ON state, it remains ON as long as the input \\
voltage is \(\geq 60 \%\) of the power voltage.
\end{tabular} \\
\hline
\end{tabular}

Note: When designing or selecting a drive circuit for the B821-108 module, take into consideration the values listed for input currents that follow.

The specification table for the unit is continued below.
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Input \\
Current
\end{tabular} & \begin{tabular}{l} 
Supply Volt \\
\((\) Vdc \()\)
\end{tabular} & \begin{tabular}{l} 
Input Volt \\
\((\mathrm{Vdc})\)
\end{tabular} & Max Input Current (mA) \\
\hline \multirow{5}{*}{} & 10 & 10 & 10 \\
\cline { 2 - 4 } & 24 & 24 & 15 \\
\cline { 2 - 4 } & 48 & 48 & 25 \\
\cline { 2 - 4 } & 60 & 60 & 32 \\
\hline OFF Level & Input Voltage & \begin{tabular}{l} 
If the applied input voltage is \(\leq 40 \%\) of the supply voltage, the \\
input to the controller is guaranteed to be in an OFF logic state. \\
However, to achieve satisfactory margin, the input voltage \\
should be \(\leq 25 \%\) of the supply voltage.
\end{tabular} \\
\hline
\end{tabular}

Note: When designing or selecting a drive circuit for the B821, take into consideration the values listed for source resistances that follow.

\section*{Specification Table, Continued}

The specification table for the unit is continued below.


\section*{B821-108 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 8 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 8 bits input & Mapped as 8 bits input \\
Type & 1 x \\
& or \\
& \begin{tabular}{l} 
Mapped as 1 register input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 1 word input \\
\%IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BCD/BIN \\
\hline
\end{tabular}

\section*{B824-016 24 Vdc Output (True High)}

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B824-016}

What's in this Chapter? 24 Vdc (True High) Output Module.

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B824-016 24 Vdc Output (True High), Overview & 390 \\
\hline B824-016 24 Vdc Output (True High), Field Connections & 391 \\
\hline B824-016 24 Vdc Output (True High), Specifications & 392 \\
\hline B824-016 Parameter Configuration & 393 \\
\hline
\end{tabular}

\section*{B824-016 24 Vdc Output (True High), Overview}

\section*{General Characteristics}

The B824-016 24 Vdc (True High) Output Module consists of sixteen independent outputs divided into two groups of eight. The B824-016 converts signals used within the PLC into 16 independent outputs. Outputs are capable of driving motor starters, relays, and a variety of other loads.
There are 16 transistor switches which are used to control loads connected to external power source. The module's 16 outputs are in two groups, eight outputs per group. Each group is fused to protect the outputs from overload currents and polarity reversal.

\section*{Simplified \\ Schematic \\ Following is a simplified schematic of the B824-016 24 Vdc (True High) Output Module.}


\section*{B824-016 24 Vdc Output (True High), Field Connections}

\section*{Overview}

Terminal
User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

Numbering and
The following diagram shows terminal numbering and output connections for the B824-016 module.

\section*{Output}

Connections


\section*{B824-016 24 Vdc Output (True High), Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B824-016 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 24 Vdc output \\
\hline \multicolumn{2}{|l|}{Type of Operation} & True high \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 20-28 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 8 \\
\hline \multirow[t]{4}{*}{On Current} & Maximum/point & 2 A continuous \\
\hline & Maximum/module & 12 A \\
\hline & Maximum/group & 6 A \\
\hline & Maximum Surge & 5 A for 10 ms \\
\hline ON State & Voltage Drop & 1.8 Vdc @ 2 A \\
\hline OFF State & Leakage Current & 1 mA (max) @ 24 Vdc \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 1 ms \\
\hline & ON \(\rightarrow\) OFF & 1 ms ) \\
\hline \multirow[t]{3}{*}{Power Required} & +5V & 32 mA \\
\hline & +4.3V & 260 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & \(24 \mathrm{Vdc} 4 \mathrm{~V}, 175 \mathrm{~mA}\)-polarity protected (excluding field load current) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fuse} & One/group, 8 A \\
\hline
\end{tabular}

\section*{B824-016 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l} 
Reference \\
Type
\end{tabular} & \begin{tabular}{l} 
Mapped as 16 bits output \\
\(0 x\) \\
or \\
Mapped as 1 register output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 16 bits output \\
\(\% M x\) \\
or \\
Mapped as 1 word output \\
\(\% M W x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B825-016 24 Vdc Input (True High)}

\section*{At a Glance}

Purpose This chapter describes the functional and physical characteristics of the B825-016 24 Vdc (True High) Input Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B825-016 24 Vdc Input (True High), Overview & 396 \\
\hline B825-016 24 Vdc Input (True High), Field Connections & 397 \\
\hline B825-016 24 Vdc Input (True High), Specifications & 398 \\
\hline B825-016 Parameter Configuration & 399 \\
\hline
\end{tabular}

\section*{B825-016 24 Vdc Input (True High), Overview}

\section*{General The B825-016 24 Vdc (True High) Input Module consists of a single group of 16 Characteristics independent inputs. The B825-016 senses and converts switched input signals into logic voltage levels used by the PLC. \\ The module provides 16 inputs that share an external power supply. Inputs can be received from push buttons, limit and proximity switches, and other 24 Vdc sources. Input voltages are sensed by comparing the incoming voltage against a fixed threshold. The threshold is a function of the user-supplied field voltage.}

Simplified
Schematic


\section*{B825-016 24 Vdc Input (True High), Field Connections}

Overview

Terminal
Numbering
and Input
Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B825-016 module.


\section*{B825-016 24 Vdc Input (True High), Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B825-016 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 24 Vdc input \\
\hline \multicolumn{2}{|l|}{Type of Operation} & True high \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 20-28 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 1 \\
\hline \multicolumn{2}{|l|}{Inputs/group} & 16 \\
\hline \multirow[t]{2}{*}{Maximum Input Voltage} & Continuous & 30 Vdc \\
\hline & Surge & 500 Vdc for 3 ms \\
\hline \multicolumn{2}{|l|}{ON Conditions} & \(\geq 21\) Vdc or. 75 of Vs, whichever is less. \(1000 \Omega\) max resistance to common. Input indicator ON. \\
\hline \multicolumn{2}{|l|}{OFF Conditions} & \(\leq 5 \mathrm{Vdc}\) or. 25 of Vs , whichever is greater. \(25,000 \Omega\) resistance to common. Input indicator OFF. \\
\hline \multicolumn{2}{|l|}{ON Current} & 6 mA (typical) @ 24 Vdc \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & 11 ms ( 2.5 ms typical) \\
\hline & ON \(\rightarrow\) OFF & 11 ms (2.5 ms typical) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 27 mA \\
\hline & +4.3V & 1.2 mA \\
\hline & -5V & 15 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & 24 Vdc 4 V @ 200 mA max (Vs) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline
\end{tabular}

\section*{B825-016 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


孟价 \(1: 140\) XBP. \(3:\) B825
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l}
Mapped as 16 bits input \\
1x \\
or \\
Mapped as 1 register input \(3 x\)
\end{tabular} & \begin{tabular}{l}
Mapped as 16 bits input \% Ix \\
or \\
Mapped as 1 word input \%IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B826-032 24 Vdc Output (True High)}

\section*{B826-032 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l} 
Reference \\
Type
\end{tabular} & \begin{tabular}{l} 
Mapped as 32 bits output \\
\(0 x\) \\
or \\
Mapped as 2 registers output \\
4 x
\end{tabular} & \begin{tabular}{l} 
Mapped as 32 bits output \\
\(\% M x\) \\
or
\end{tabular} \\
\hline Output Type & BIN/BCD & \begin{tabular}{l} 
Mapped as 2 words output \\
OMWx
\end{tabular} \\
\hline
\end{tabular}

\section*{B827-032 24 Vdc Input (True High)}

36

\section*{At a Glance}

Purpose This chapter describes the functional and physical characteristics of the B827-032 24 Vdc (True High) Input Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B827-032 24 Vdc Input (True High), Overview & 404 \\
\hline B827-032 24 Vdc Input (True High), Field Connections & 405 \\
\hline B827-032 24 Vdc Input (True High), Specifications & 406 \\
\hline B827-032 Parameter Configuration & 407 \\
\hline
\end{tabular}

\section*{B827-032 24 Vdc Input (True High), Overview}

\section*{General Characteristics}

The B827-032 24 Vdc True High Input Module consists of a single group of 32 independent inputs. The B827 senses and converts switched input signals into logic voltage levels used by the PLC. Inputs can be received from push buttons, limit and proximity switches, and other 24 Vdc sources.
The B827-032 provides 32 inputs that share an external supply voltage. Input voltages are sensed by comparing the incoming voltage against a fixed threshold. The threshold is a function of the user-supplied field voltage.
Simplified Following is a simplified schematic of the B827-032 24 Vdc (True High) Input Schematic Module.


\section*{B827-032 24 Vdc Input (True High), Field Connections}

\section*{Overview}

\section*{Terminal \\ Numbering and Input \\ Connections}

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B827-032 module.


\section*{B827-032 24 Vdc Input (True High), Specifications}
\(\begin{array}{ll}\text { Specification } & \text { The following table provides the specifications for the unit. } \\ \text { Table } & \text { B827-032 Specifications }\end{array}\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B827-032 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 24 Vdc high density input \\
\hline \multicolumn{2}{|l|}{Type of Operation} & True high \\
\hline \multicolumn{2}{|l|}{Number of Points} & 32 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 18-30 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 1 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 32 \\
\hline \multicolumn{2}{|l|}{ON Level Input Voltage} & \(\geq 22.5 \mathrm{Vdc}\) or. 75 of Vs, whichever is less \\
\hline \multicolumn{2}{|l|}{OFF Level Input Voltage} & \(\leq 4.5 \mathrm{Vdc}\) or. 25 of Vs, whichever is greater \\
\hline \multirow[t]{2}{*}{Input Resistance} & On State & \(8-11 \mathrm{k} \Omega\) \\
\hline & Off State & 6-8 \({ }^{\text {R }}\), \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 0.4 ms \\
\hline & ON \(\rightarrow\) OFF & 1 ms ) \\
\hline \multirow[t]{3}{*}{Power Required} & \(+5 \mathrm{~V}\) & 30 mA \\
\hline & +4.3V & 1 mA \\
\hline & -5 V & 0 mA \\
\hline \multirow[t]{2}{*}{External Power Supply} & Supply Voltage & 18 - 30 Vdc continuous 40 Vdc peak for 10 ms surge \\
\hline & Supply Current & 60 mA max over an 18-30 Vdc range \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline \multicolumn{2}{|l|}{Fuse} & 0.25 A \\
\hline
\end{tabular}

\section*{B827-032 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 32 bits input & Mapped as 32 bits input \\
Type & 1 x \\
or \\
& \begin{tabular}{l} 
Mapped as 2 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 2 words input \\
\%IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B828-016 5 V TTL Output}

\section*{37}

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B828-016 5 V TTL Output Module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B828-016 5 V TTL Output, Overview & 410 \\
\hline B828-016 5 V TTL Output, Field Connections & 411 \\
\hline B828-016 5 V TTL Output, Specifications & 412 \\
\hline B828-016 Parameter Configuration & 413 \\
\hline
\end{tabular}

\section*{B828-016 5 V TTL Output, Overview}

\section*{General Characteristics}

The B828-016 5 V TTL Output Module converts logic signals used within the controller into sixteen independent 5 V TTL outputs. These outputs are compatible with TTL and DTL logic as well as other loads such as LED displays. The module uses sixteen transistor switches which are capable of sinking load currents up to 75 mA supplied from an external 5 Vdc power source.

\section*{Simplified Schematic}


\section*{B828-016 5 V TTL Output, Field Connections}

\section*{Overview}

Terminal
Numbering and
Output
Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the B828-016 5 V TTL Output Module.


\section*{B828-016 5 V TTL Output, Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B828-016 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 5 V TTL output \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 5 V TTL \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 1 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 16 \\
\hline \multicolumn{2}{|l|}{ON Level} & 4.0 Vdc min @ 1 mA source, 5 Vdc supply @ 4.75 Vdc \\
\hline \multicolumn{2}{|l|}{OFF Level} & 0.4 Vdc max @ 75 mA rated current: sinking 75 mA max., continuous, 100 mA peak ( \(10 \mathrm{~ms}, 20 \%\) duty cycle) \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 1 ms \\
\hline & ON \(\rightarrow\) OFF & 1 ms ) \\
\hline \multirow[t]{3}{*}{Power Required} & +5V & 32 mA \\
\hline & +4.3V & 220 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & \(5.00 .25 \mathrm{Vdc}, 600 \mathrm{~mA}\) max outputs ON \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & One/group, 1.5 A \\
\hline
\end{tabular}

\section*{B828-016 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l} 
Reference \\
Type
\end{tabular} & \begin{tabular}{l} 
Mapped as 16 bits output \\
\(0 x\) \\
or \\
Mapped as 1 register output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 16 bits output \\
\(\% \mathrm{Mx}\) \\
or
\end{tabular} \\
\hline Output Type & BIN/BCD & \begin{tabular}{l} 
Mapped as 1 word output \\
\(\% M W x\)
\end{tabular} \\
\hline
\end{tabular}

\title{
B829-116 Fast Response \\ 5 V TTL Input
}

\section*{At a Glance}
\(\begin{array}{ll}\text { Purpose } & \text { This chapter describes the functional and physical characteristics of theB829-116 } \\ \text { Fast Response } 5 \text { V TTL Input Module. }\end{array}\)
What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B829-116 Fast Response 5 V TTL Input, Overview & 416 \\
\hline B829-116 Fast Response 5 V TTL Input, Field Connections & 417 \\
\hline B829-116 Fast Response 5 V TTL Input, Specifications & 418 \\
\hline B829-116 Parameter Configuration & 419 \\
\hline
\end{tabular}

\section*{B829-116 Fast Response 5 V TTL Input, Overview}

\section*{General Characteristics}

Simplified Schematic

The B829-116 fast response 5 V TTL Input Module converts signals from 16 independent 5 V logic-compatible inputs into signals used by the PLC. Each input is capable of conditioning signals from TTL devices or DTL devices for use by the PLC

Following is a simplified schematic of the B829-116 fast response 5 V TTL Input Module.


\section*{B829-116 Fast Response 5 V TTL Input, Field Connections}

\section*{Overview}

\section*{Terminal \\ Numbering and Input \\ Connections}

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B829-116 fast response 5 V TTL Input module

> TERMINAL NUMBERS


TERMINAL NUMBERS

Input 9 Input 10 Input 11 Input 12 Input 13 Input 14 Input 15 Input 16 Power Supply Common Power Supply + 5VDC


\section*{B829-116 Fast Response 5 V TTL Input, Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B829-116 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 5 V TTL 16-point \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 5 V \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 1 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 16 \\
\hline \multirow[t]{10}{*}{Input Ratings} & \multirow[t]{5}{*}{ON Level} & VIH=2.0 Vdc (minimum) \\
\hline & & IIL=0.1 mA (max) @ VIH=5.5 Vdc \\
\hline & & V (source) \(=5.0 \mathrm{Vdc}\) \\
\hline & & V ( max input) \(=8.0 \mathrm{~V}\) \\
\hline & & I (max positive clamp) \(=25 \mathrm{~mA}\) \\
\hline & \multirow[t]{5}{*}{OFF Level} & VIL=0.8 Vdc (maximum) \\
\hline & & IIL=1.1 mA (maximum) @ V \\
\hline & & (source)=5.25 Vdc and VIL=0.0 V \\
\hline & & V (max negative input) \(=-2 \mathrm{Vdc}\) \\
\hline & & 1 (max negative clamp) \(=15 \mathrm{~mA}\) \\
\hline \multicolumn{2}{|l|}{Transient Voltage} & 100 V for 10 ms \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 1 ms \\
\hline & ON \(\rightarrow\) OFF & 1 ms ) \\
\hline \multirow[t]{3}{*}{Power Required} & +5V & 21 mA \\
\hline & +4.3V & 1 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & \(5.00 .25 \mathrm{Vdc}, 325 \mathrm{~mA}\) all inputs ON \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline
\end{tabular}

\section*{B829-116 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window


而 \(1: 140\) XBP. \(3:\) B829
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l} 
Reference \\
Type
\end{tabular} & Mapped as 16 bits input & Mapped as 16 bits input \\
\%x \\
& \begin{tabular}{l} 
or \\
Mapped as 1 register input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 1 Word input \\
\(\%\) \%Wx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B832-016 24 Vdc Output (True Low)}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B832-016} 24 Vdc (True Low) Output Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B832-016 24 Vdc Output (True Low), Overview & 422 \\
\hline B832-016 24 Vdc Output (True Low), Field Connections & 423 \\
\hline B832-016 24 Vdc Output (True Low), Specifications & 424 \\
\hline B832-016 Parameter Configuration & 425 \\
\hline
\end{tabular}

\section*{B832-016 24 Vdc Output (True Low), Overview}

\section*{General Characteristics}

The Modicon B832-016 24 Vdc (True Low) Output Module consists of a single group of 16 independent outputs. The B832-016 converts signals used within the PLC into 16 independent 24 Vdc outputs. These outputs are capable of driving indicators, relays, and a variety of other loads. Sixteen transistor switches are used to control loads connected to an external power source.

\section*{Simplified Schematic \\ Following is a simplified schematic of the B832-016 24 Vdc (True Low) Output Module.}


\section*{B832-016 24 Vdc Output (True Low), Field Connections}

\section*{Overview}

Terminal
Numbering and Output
Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the B832-016 24 Vdc (True Low) Output module


\section*{B832-016 24 Vdc Output (True Low), Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B832-016 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 24 Vdc output \\
\hline \multicolumn{2}{|l|}{Type of Operation} & True low \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 20-28 Vdc \\
\hline \multicolumn{2}{|l|}{Peak Voltage} & 33 Vdc for 1 s \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 8 \\
\hline \multirow[t]{4}{*}{On Current} & Maximum/point & 250 mA \\
\hline & Surge Current & 1 A for 10 ms \\
\hline & Maximum/group & 2 A \\
\hline & Maximum/module & 4 A \\
\hline \multicolumn{2}{|l|}{Off Current} & 0.5 mA maximum \\
\hline \multicolumn{2}{|l|}{On Voltage Drop} & 0.5 Vdc maximum/output @ 250 mA \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 1 ms \\
\hline & ON \(\rightarrow\) OFF & 1 ms ) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 32 mA \\
\hline & +4.3 V & 235 mA \\
\hline & -5 V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & \(24 \mathrm{Vdc}, 4 \mathrm{~V}, 600 \mathrm{~mA}\) (excluding field load current) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & 1/module, 6 A \\
\hline
\end{tabular}

\section*{B832-016 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits output & \begin{tabular}{l} 
Mapped as 16 bits output \\
Type
\end{tabular} \\
& \begin{tabular}{l} 
\%x \\
or \\
Mapped as 1 register output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 1 word output \\
\%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B833-016 24 Vdc Input (True Low)}

\section*{40}

\section*{Overview}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B833-016}

What's in this Chapter? 24 Vdc (True Low) Input Module.

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B833-016 24 Vdc Input (True Low), Overview & 428 \\
\hline B833-016 24 Vdc Input (True Low), Field Connections & 429 \\
\hline B833-016 24 Vdc Input (True Low), Specifications & 430 \\
\hline B833-016 Parameter Configuration & 431 \\
\hline
\end{tabular}

\section*{B833-016 24 Vdc Input (True Low), Overview}

\section*{General Characteristics}

The B833-016 24 Vdc (True Low) Input Module consists of two groups of eight independent inputs. The B833-016 senses and converts switched input signals into logic voltage levels used by the PLC.
Inputs can be received from push buttons, limit and proximity switches, and other 24 Vdc sources. The module provides 16 inputs that share an external power supply. Input voltages are sensed by comparing the incoming voltage against a fixed threshold.

\section*{Simplified Schematic \\ Following is a simplified schematic of the B833-016 24 Vdc (True Low) Input Module.}


\section*{B833-016 24 Vdc Input (True Low), Field Connections}

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal
Numbering
and Input
Connections
The following diagram shows terminal numbering and input connections for the B833-016 24 Vdc (True Low) Input Module.


\section*{B833-016 24 Vdc Input (True Low), Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B833-016 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 24 Vdc true low input \\
\hline \multicolumn{2}{|l|}{Type of Operation} & True low \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 20-28 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 8 \\
\hline \multicolumn{2}{|l|}{Maximum Input Voltage} & 100 Vdc for 3 ms \\
\hline \multicolumn{2}{|l|}{ON Conditions} & \(\leq 2.6 \mathrm{Vdc}\) or .13 of Vs , whichever is greater. \(200 \Omega\) max resistance to common. Input indicator ON. \\
\hline \multicolumn{2}{|l|}{OFF Conditions} & \(\geq 21 \mathrm{Vdc}\) or .75 of Vs, whichever is less. \(10,000 \Omega \mathrm{~min}\) resistance to common. Input indicator OFF. \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 11 ms \\
\hline & ON \(\rightarrow\) OFF & 11 ms ) \\
\hline \multirow[t]{3}{*}{Power Required} & +5V & 27 mA \\
\hline & +4.3V & 2 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & \(24 \mathrm{Vdc}, 4 \mathrm{~V}, 300 \mathrm{~mA}\) (excluding field load current) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline
\end{tabular}

\section*{B833-016 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


酸 \(1: 140\) XBP . \(3:\) B833

Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits input & Mapped as 16 bits input \\
Type & 1 x & \begin{tabular}{l} 
\%lx \\
or \\
Mapped as 1 register input \\
\(3 x\)
\end{tabular} \\
\hline Input Type & BIN/BCD & \begin{tabular}{l} 
Mapped as 1 word input \\
\(\%\) IWx
\end{tabular} \\
\hline
\end{tabular}

\title{
B836-016 12-250 Vdc Isolated Output
}

\section*{41}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B836-016} 12 - 250 Vdc Isolated Output Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B836-016 12-250 Vdc Isolated Output, Overview & 434 \\
\hline B836-016 12-250 Vdc Isolated Output, Field Connections & 435 \\
\hline B836-016 12-250 Vdc Isolated Output, Specifications & 437 \\
\hline B836-016 Parameter Configuration & 438 \\
\hline
\end{tabular}

\section*{B836-016 12-250 Vdc Isolated Output, Overview}

\section*{General Characteristics}

The B836-016 12-250 Vdc Isolated Output Module accepts up to 16 signals from a 984 PLC and converts them to independent outputs. The module's essential function is to switch one or more field circuits OFF
At any given time, one or more output channel's signals may be in a true high configuration while one or more of the remaining output channel's signals are in a true low configuration. The output signals are capable or driving displays, relays, lamps, or any load connected to a \(12-250 \mathrm{Vdc}\) user supplied voltage source. Finally, the module is fused against overload currents and protected from accidental polarity reversal.
Since all of the16 circuits are the same, describing one circuit's function describes the module's function.
Data commands from the controller are shipped via OURBUS to the OBS communications chip in the B836-016 module via Modicon's standard data interface. The OBS chip directs the signal to the addressed channel which in turn feeds the transistor driver, couples through the ISOGATE and turns the field effect transistor (FET) switch on. Since the circuit is a completely floating arrangement, it is equally useful in a true high (sourcing) or true low (sinking) configuration.

Following is a simplified block diagram of the B836-016 12-250 Vdc Isolated Output Module.

\section*{Schematic Diagram}


Note: Certain large inductive load conditions may require external reverse diodes placed directly across the load for complete circuit protection.

\section*{B836-016 12-250 Vdc Isolated Output, Field Connections}

Overview

Terminal Numbering and Output
Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following figure shows the terminal numbering and output connections required.
\begin{tabular}{|c|c|c|c|c|}
\hline & & \(+11-\) & & \multirow[t]{2}{*}{(2)} \\
\hline CHAN \(1+\) & (1) & -1上 & CHAN 9 + & \\
\hline CHAN \(1-\) & (2) & & CHAN 9 - & (2) \\
\hline CHAN \(2+\) & (3) & \(\stackrel{+}{\square}\) & CHAN \(10+\) & (23) \\
\hline CHAN 2 - & (4) & 5 & CHAN \(10-\) & (2) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
CHAN \(3+\) \\
CHAN 3 -
\end{tabular}} & (5) & & CHAN 11 + & (24) \\
\hline & (6) & & CHAN 11 - & (2) \\
\hline \[
\text { CHAN } 4+
\] & (7) & & CHAN 12 + & (20) \\
\hline & & & CHAN 12 & (2) \\
\hline CHAN 4 - & (8) & & CHAN 12 - & (28) \\
\hline NC & (9) & & NC & (29) \\
\hline NC & (10) & & NC & 30 \\
\hline NC & (1) & & NC & (3) \\
\hline NC & (12) & & NC & (3) \\
\hline CHAN \(5+\) & (13) & & CHAN \(13+\) & (3) \\
\hline CHAN 5 - & (4) & & CHAN \(13-\) & (3) \\
\hline CHAN \(6+\) & (15) & & CHAN 14 + & (34) \\
\hline CHAN 6 - & (16) & & CHAN \(14-\) & (3) \\
\hline CHAN 7 + & (17) & & CHAN 15 + & 36 \\
\hline CHAN 7- & (18) & & CHAN 15- & (3) \\
\hline CHAN \(8+\) & (19) & & CHAN \(16+\) & (38) \\
\hline & (2) & & & (3) \\
\hline CHAN 8 - & (2) & & CHAN 16 - & (40) \\
\hline
\end{tabular}

Typical User- The following figure shows an example of typical user-side field connector circuitry. Side Field Connector Circuitry


\section*{B836-016 12-250 Vdc Isolated Output, Specifications}

\section*{Specifications B836-016 Specifications}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & 12-250 Vdc isolated output \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 12-250 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 16 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 1 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Maximum Load Current}} & 0.75 A (typical) @ 250 Vdc \\
\hline & & 1 A (typical) @125 Vdc \\
\hline & & 1.5 A (typical) @ 48 Vdc \\
\hline \multicolumn{2}{|l|}{Surge Current} & 5.0 A max (for 10 ms @ 1 s repetition rate) \\
\hline \multicolumn{2}{|l|}{Maximum OFF Leakage Current} & 1 mA \\
\hline \multicolumn{2}{|l|}{Maximum Load Current} & 5 mA \\
\hline \multicolumn{2}{|l|}{ON State Voltage Drop} & 3. V max @ 1.50 A \\
\hline \multicolumn{2}{|l|}{Maximum Output Current} & 8.0 A dc total switched current (all channels cumulative) \\
\hline \multicolumn{2}{|l|}{Minimum Output Current} & 15.0 mA dc (lower current des not guarantee indicator operation) \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 1 ms \\
\hline & ON \(\rightarrow\) OFF & 5 ms \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 50 mA \\
\hline & +4.3 V & 603 mA \\
\hline & -5 V & 0 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & 1/group, 4 A \\
\hline
\end{tabular}

\section*{B836-016 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits output & Mapped as 16 bits output \\
Type & \(0 x\) & \(\% M x\) \\
& \begin{tabular}{l} 
or \\
Mapped as 1 register output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 1 word output \\
\(\% M W x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B837-016 24 Vac/Vdc Input (True High)}

\section*{42}

\section*{At a Glance}

Purpose This chapter describes the functional and physical characteristics of the B837-016 \(24 \mathrm{Vac} / \mathrm{Vdc}\) (True High) Input Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B837-016 \(24 \mathrm{Vac} /\) Vdc Input (True High), Overview & 440 \\
\hline B837-016 24 Vac/Vdc Input (True High), Field Connections & 441 \\
\hline B837-016 24 Vac/Vdc Input (True High), Specifications & 442 \\
\hline B837-016 Parameter Configuration & 443 \\
\hline
\end{tabular}

\section*{B837-016 24 Vac/Vdc Input (True High), Overview}

\section*{General Characteristics}

The B837-016 24 Vac/Vdc (True High) Input module senses OFF and ON input signals from its field circuitry and converts them to logic levels used by a Modicon PLC. The module's 16 inputs are separated into two groups of eight channels, each group being totally isolated from the other.
Although both groups use common return wires, none has a definite relationship to system ground unless established in the user's field circuitry. Since both groups nominally employ independent power return sources, both ac and dc powered field circuits may input to the module at the same time.

Following is a simplified block diagram of the B837-016 24 Vac/Vdc (True High) Input Module.

Simplified
Schematic Diagram


When the user's ac/dc powered field circuit goes ON - as the result of a limit switch for example - it presents the field power voltage at the modules appropriate input channel. When the input voltage meets or exceeds the module's guaranteed ON threshold, the resulting voltage turns the channel monitor lamp ON, current flows through the bridge rectifier and subsequently the opto-isolator (OPTO-ISOL) circuit. Given a nominal 24 V field power supply and \(1000 \Omega\) maximum input source impedance, the module's channel monitor lamps will indicate ON and OFF when voltages are 20.4 Vac/19.2 Vdc for the high level ON ; and \(6 \mathrm{Vac} / 10 \mathrm{Vdc}\) for the low level OFF respectively. The optical energy goes to the communications board (COMM BOARD) where the Ourbus output register is set to represent the field circuit's ON state. As long as the field input status remains true, the module will communicate this status each time it is polled by the controller.

Note: Reversal of external signal polarity will not cause channel circuit damage as circuit design is indifferent to accidental polarity reversal.

\section*{B837-016 24 Vac/Vdc Input (True High), Field Connections}

\section*{Overview}

\section*{Terminal Numbering and Input Connections}

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B837-016 24 Vac/Vdc True High Input Module.


Note: To use both input groups with a single power supply, jump terminals \#9 and \#19.

\section*{B837-016 24 Vac/Vdc Input (True High), Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B837-016 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & \(24 \mathrm{Vac} / \mathrm{dc}\) input \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 20.4-27 Vac/47-63 Hz; 19.2-30 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 8 \\
\hline \multirow[t]{2}{*}{Maximum Input Voltage} & Continuous & \(27 \mathrm{Vac} / 30 \mathrm{Vdc})\) \\
\hline & Inrush & \(32 \mathrm{Vac} / 36 \mathrm{Vdc}\) for 10s; 58 V peak 10 ms \\
\hline \multicolumn{2}{|l|}{ON Conditions} & \(\geq 20.4 \mathrm{Vac}\) or 19.2 Vdc with input source impedance of 1 k maximum input current 102 mA \\
\hline \multicolumn{2}{|l|}{OFF Conditions} & < \(6 \mathrm{Vac} / 10 \mathrm{Vdc}<27 \mathrm{Vac}\) with input source impedance \(\geq 15 \mathrm{k}<30 \mathrm{Vdc}\) with input source Impedance \(\geq 30 \mathrm{k}\) \\
\hline \multicolumn{2}{|l|}{Input ON Current} & 10 mA (max), 5 mA (minimum) \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & 6 ms \\
\hline & ON \(\rightarrow\) OFF & 18 ms \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 40 mA \\
\hline & +4.3V & 1 mA \\
\hline & -5V & 15 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & \(24 \mathrm{Vac} / \mathrm{dc}, 300 \mathrm{~mA}\) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline
\end{tabular}

\section*{B837-016 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits input & Mapped as 16 bits input \\
Type & 1 x & \begin{tabular}{l} 
\%Ix \\
or \\
\\
\\
\end{tabular} \begin{tabular}{l} 
Mapped as 1 register \\
\(3 x\)
\end{tabular} \\
\hline or \\
Input Type & BIN/BCD & \begin{tabular}{l} 
Mapped as 1 word input \\
\%IWx
\end{tabular} \\
\hline
\end{tabular}

\section*{B838-032 24 Vdc Output (True High)}

\section*{43}

\section*{At a Glance}

Purpose This chapter describes the functional and physical characteristics of the B838-032 24 Vdc (True High) Output Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B838-032 24 Vdc Output (True High), Overview & 446 \\
\hline B838-032 24 Vdc Output (True High), Field Connections & 447 \\
\hline B838-032 24 Vdc Output (True High), Specifications & 448 \\
\hline B838-032 Parameter Configuration & 449 \\
\hline
\end{tabular}

\section*{B838-032 24 Vdc Output (True High), Overview}

\section*{General Characteristics}

The B838-032 24 Vdc (True High) Output Module consists of a four groups of eight outputs for a total of 32 outputs. The B838-032 converts logic signals used within the PLC into 3224 Vdc outputs.
Outputs are capable of driving relays, pilot lamps, and other loads rated at 1/4 A. Each group of eight share an external supply voltage and is fused at 6.3 A. The outputs are designed to withstand the extreme voltage transients often encountered in an industrial environment.

Simplified Schematic Diagram

Following is a simplified schematic of the B838-032 24 Vdc (True High) Output Module.


\section*{B838-032 24 Vdc Output (True High), Field Connections}

\section*{Overview}

Terminal Numbering and Output Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the B838-032 24 Vdc (True High) Output Module


\section*{B838-032 24 Vdc Output (True High), Specifications}

Specification The following table provides the specifications for the unit. Table
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B838-032 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & 24 Vdc output \\
\hline \multicolumn{2}{|l|}{Type of Operation} & True High \\
\hline \multicolumn{2}{|l|}{Number of Points} & 32 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 20-30 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 4 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 8 \\
\hline \multirow[t]{3}{*}{Load Voltage} & Ripple Voltage & 4.0 peak to peak @ 10 kHz or less \\
\hline & Peak Voltage & 33 V max \\
\hline & ON State Voltage Drop & 1.0 Vdc @ 1/2 A @ full power \\
\hline \multirow[t]{2}{*}{Load Current} & Continuous Current & 0.50 A max / output, 16 A/module maxi-mum \\
\hline & Surge Current & The surge current of the B838 is 2.5 A for 0.5 ms , and should not be exceeded. If a short circuit (momentary or sustained) ex-ists, the FET on the output may fail prior to the group fuse blowing. Modicon recommends one of the following options to protect the outputs:1) Add external fuses to each output (1-1.5 A fast blow),2) Add external current limiting resistors to protect the output FET \\
\hline \multicolumn{2}{|l|}{Lamp Loads} & Up to 5 W \\
\hline \multicolumn{2}{|l|}{Inductive Load Clamp Voltage} & -20 V nominal \\
\hline \multicolumn{2}{|l|}{Inductive Clamp Current} & 1/2 A peak, 0.6 Hz up to 3.0 Hz \\
\hline \multicolumn{2}{|l|}{Fast Contactor Turn Off} & \(<60 \mathrm{~ms}\) with a 3.0 Hz load \\
\hline \multicolumn{2}{|l|}{Off State Leakage Current} & 1 mA max @ 30 Vdc \\
\hline \multirow[t]{2}{*}{Maximum Response Time (Resistive Load)} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & 1 ms \\
\hline & ON \(\rightarrow\) OFF & 1 ms \\
\hline \multirow[t]{2}{*}{Power Required} & +5 V & 160 mA \\
\hline & +4.3 V & 1 mA \\
\hline Power Required (Cont.) & -5 V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & \(24 \mathrm{Vdc} 4 \mathrm{~V}, 125 \mathrm{~mA}\) (excluding field load current \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

\section*{B838-032 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l} 
Reference \\
Type
\end{tabular} & \begin{tabular}{l} 
Mapped as 32 bits output \\
\(0 x\) \\
or \\
Mapped as 2 registers output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 32 bits output \\
\(\% M x\) \\
or \\
Mapped as 2 words output \\
\(\%\) MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B840-108 Relay Output}

\section*{44}

\section*{At a Glance}
\begin{tabular}{l|l|l|} 
Purpose & \begin{tabular}{l} 
This chapter describes the functional and physical characteristics of the B840-108 \\
Relay Output Module.
\end{tabular} \\
\begin{tabular}{l|l|} 
What's in this \\
Chapter?
\end{tabular} & This chapter contains the following topics: & Page \\
\hline Topic & 452 \\
\hline B840-108 Relay Output, Overview & 454 \\
\hline B840-108 Relay Output, Field Connections & 455 \\
\hline \(840-108\) Relay Output, Specifications & 456 \\
\hline B840-108 Parameter Configuration & \\
\hline
\end{tabular}

\section*{B840-108 Relay Output, Overview}

\section*{General Characteristics}

The B840-108 Relay Output Module converts signals from the 800 Series Ourbus to eight independent relay outputs. Each output is capable of driving relays, pilot lamps, or other loads up to 2 A.
The module utilizes eight high-reliability mercury-wetted relays to control the loads. Each of the eight outputs is electrically isolated from the I/O bus and from the other seven outputs by the relay coil. These outputs are capable of switching 100 VA maximum instantaneous power associated with ac or dc loads. Such devices may range from relays and pilot lamps to multiplexed low level analog signals.
Each output has an RC snubber to protect the mercury wetted contacts from arcing caused by rapid rate of rise of applied voltage from inductive loads upon instantaneous opening of the contacts. The output signals can withstand severe voltage transients that may be encountered in industrial environments-i.e., the voltage transients will not propagate through the relay to the Ourbus, thus protecting all other controller system components from damage. All output circuits are also fused to protect against overload currents.

\section*{Simplified Schematic Diagram}


The module is user-configurable as to setting up for normally-open or normallyclosed operation of the relays as described below. You can also optionally configure the RC snubber circuit to remove it when minimal leakage current applications such as data multiplexing are being used.

The logic interface chip samples the eight logic level signals simultaneously from the PLC on each scan and holds these samples to drive the appropriate reed relay coil. Assuming a normally-open jumpered configuration, when the relay coil is energized, the reed relay contacts conduct current from the output A terminal to the output B terminal.

\section*{Configuration}

The B840-108 Relay Module is initially shipped with all 8 channels jumpered for the normally-open configuration with all snubber circuits connected. You may wire any of the channels for either normally-open or normally-closed operation by transferring a wire jumper from one tab to another on the printed circuit board to change from normally-open to normally-closed
The following illustration shows the user wiring configuration for the B840-108 Relay Module
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{CHAN} & \multicolumn{2}{|c|}{RELAY} \\
\hline & N.O. & N.C. \\
\hline \multirow[b]{2}{*}{1} & W1-E2 & W1-E1 \\
\hline & & \\
\hline \multirow[b]{2}{*}{2} & W2-E4 & W2-E3 \\
\hline & & \\
\hline \multirow[b]{2}{*}{3} & W3-E6 & W3-E5 \\
\hline & & \\
\hline \multirow[b]{2}{*}{4} & W4-E8 & W4-E7 \\
\hline & & \\
\hline \multirow[b]{2}{*}{5} & W5-E10 & W5-E9 \\
\hline & & \\
\hline \multirow[b]{2}{*}{6} & W6-E12 & W6-E11 \\
\hline & & \\
\hline \multirow[b]{2}{*}{7} & W7-E14 & W7-E13 \\
\hline & & \\
\hline \multirow[b]{2}{*}{8} & W8-E16 & W8-E15 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{CHAN} & \multicolumn{2}{|r|}{SNUBBER} \\
\hline & IN & OUT \\
\hline 1 & JP1 & JP1 \\
\hline \multirow{2}{*}{2} & & \\
\hline & JP2 & JP2 \\
\hline 3 & JP3 & JP3 \\
\hline \multirow{2}{*}{4} & & \\
\hline & JP4 & JP4 \\
\hline 5 & JP5 & JP5 \\
\hline \multirow{2}{*}{6} & & \\
\hline & JP6 & JP6 \\
\hline \multirow{2}{*}{7} & & \\
\hline & JP7 & JP7 \\
\hline \multirow{2}{*}{8} & & \\
\hline & JP8 & JP8 \\
\hline
\end{tabular}

The snubber circuits are disconnected by removing the (JP1-JP8) appropriate jumper. Refer to the label on the side of the module.

\section*{B840-108 Relay Output, Field Connections}

\section*{Overview}

\section*{Terminal Numbering and Output Connections}

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the B840-108 Relay Output Module.

Output 1A
Output 1B
Output 2A
Output 2B
NOT USED
Output 3A
Output 3B
Output 4A
Output 4B
NOT USED


Output 5A
Output 5B
Output 6A
Output 6B
NOT USED
Output 7A
Output 7B
Output 8A
Output 8B
NOT USED


Note: Since each output is isolated from the remaining outputs, separate power sources can be used for each load. Each output can be wired for current source or current sink operation.

Note: It is possible to have the ACTIVE indicator lit when one or more output channels are working improperly

\section*{840-108 Relay Output, Specifications}

\section*{Specification Table}

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{840-108 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & Reed Relay (NO/NC) output, isolated circuits, sink or source current \\
\hline \multicolumn{2}{|l|}{Number of Points} & 8 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & \(0-300 \mathrm{Vdc}\) max 0-230 Vac max./47-63 Hz \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 8 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 1 \\
\hline \multirow[t]{2}{*}{Maximum Load Current} & Carrying (unswitched) & 3 A max) \\
\hline & Switching & 2.0 max (0.3 A @ 300 Vdc \\
\hline \multicolumn{2}{|l|}{Switching Capability} & 100 VA max \\
\hline \multicolumn{2}{|l|}{Contact Resistance} & < \(150 \mathrm{~m} \Omega\) (including fuse, pc clad, wire, connectors, and contacts) \\
\hline \multicolumn{2}{|l|}{Open Circuit Impedance (Snubber Circuits Connected} & \(20 \mathrm{~K} \Omega+5 \mathrm{~K} \Omega\) capacitive reactance @ 60 Hz \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 6 ms (2 ms typical) \\
\hline & ON \(\rightarrow\) OFF & 6 ms (2 ms typical) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 67 mA \\
\hline & +4.3 V & 400 mA \\
\hline & -5V & 0 mA \\
\hline \multicolumn{2}{|l|}{Relay Life Rating} & 1 billion operations @rated load @ \(25^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & 1 / group, 4 A \\
\hline
\end{tabular}

\section*{B840-108 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window
REED RELAY NO


而111:140 XBP. \(3:\) B840
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 8 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 8 bits output & \begin{tabular}{l} 
Mapped as 8 bits output \\
Type
\end{tabular} \\
& \begin{tabular}{l} 
\%x \\
or \\
Mapped as 1 register output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 1 word output \\
\(\% M W x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B842-008 Reed Relay Output}

\section*{45}

\section*{At a Glance}
\begin{tabular}{l|l|l|} 
Purpose & \begin{tabular}{l} 
This chapter describes the functional and physical characteristics of the B842-008 \\
Reed Relay Output Module.
\end{tabular} \\
\begin{tabular}{l|l|} 
What's in this \\
Chapter?
\end{tabular} & This chapter contains the following topics: & Page \\
\hline Topic & 458 \\
\hline B842-008 Reed Relay Output, Overview & 459 \\
\hline B842-008 Reed Relay Output, Field Connections & 460 \\
\hline \(842-008\) Reed Relay Output, Specifications & 461 \\
\hline B842-008 Parameter Configuration & \\
\hline
\end{tabular}

\section*{B842-008 Reed Relay Output, Overview}

\section*{General Characteristics}

The B842-008 Reed Relay Output Module, normaly closed, converts the signals used on the 800 Series OURBUS to 8 independent mercury wetted Reed Relay outputs capable of driving relays, pilot lamps, or other loads up to 2.0 amperes, or low level circuits such as analog multiplexing.
The module uses eight high reliability mercury wetted Reed Relays to control loads. Each output is electrically isolated from the I/O Bus and from the other seven outputs by the coil of the relay and will withstand the severe voltage transients normally encountered in industrial environments without damage or adverse effect on the controller.
Self-contained resistor and capacitor snubber networks suppress transient voltages when inductive loads are driven and provides contact protection. The eight outputs are also fused to protect their circuitry against overload currents. The B842-008 Reed Relay Output Module is compatible with input modules.

Simplified
Schematic


\section*{B842-008 Reed Relay Output, Field Connections}

\section*{Overview}

\section*{Terminal \\ Numbering and Output \\ Connections}

OUTPUT 1A OUTPUT 1B OUTPUT 2A OUTPUT 2B
NOT USED
OUTPUT 3A
OUTPUT 3B
OUTPUT 4A
OUTPUT 4B
NOT USED


Note: Since each output is isolated from the remaining outputs, separate power sources can be used for each load. Each output can be wired for current source or current sink operations.

Note: It is possible to have the ACTIVE indicator lit with one or more output channels working improperly.

\section*{842-008 Reed Relay Output, Specifications}

Specification Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{842-008 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & Reed Relay Output (NC) \\
\hline \multicolumn{2}{|l|}{Number of Points} & 8 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 300 V, max. VDC or Peak AC \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 8 \\
\hline \multicolumn{2}{|l|}{Outputs / group} & 1 \\
\hline \multirow[t]{2}{*}{Maximum Load Current} & Carrying & 3 A max. continuous after closure \\
\hline & Switching & 2 max. \\
\hline \multicolumn{2}{|l|}{Switching Capability} & 100 VA max. instantaneous power \\
\hline \multicolumn{2}{|l|}{Contact Resistance} & < \(100 \mathrm{~m} \Omega\) \\
\hline OFF State & Leakage Current & 5 mA @ 120 VAC \\
\hline \multicolumn{2}{|l|}{Maximum Response Time} & \(6 \mathrm{~ms} \mathrm{max}\). (2 ms typical) \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 5.06 +/- 0.32 VDC, 67 mA max. \\
\hline & -5V & -5.06 +/- 0.26 VDC, 0 mA \\
\hline & V I/O & 4.25 +/- 0.33 VDC, 400 mA max. \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fusing} & 1 / output, 3 A \\
\hline \multicolumn{2}{|l|}{Protection} & The B842-008 output module has a resistorcapacitor snubber network to protect contacts from transients due to switching inductive loads. \\
\hline \multicolumn{2}{|l|}{Open Circuit Impedance} & 25 k capacitive reactance at 6 Hz \\
\hline Isolation Voltage & & \begin{tabular}{l}
Between outputs and I/O Bus, between outputs and case, and outputs to outputs. \\
1500 VAC steady state max. (at 60 Hz ) for 60 sec . 2500 VDC for 60 sec.
\end{tabular} \\
\hline
\end{tabular}

Note: The module must be mounted in a upright position

\section*{B842-008 Parameter Configuration}

\section*{Parameter and} Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available
\end{tabular} & Description \\
\hline Mapping & WORD (\%MW-4X) & BIT (\%M-0X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 1 & 8 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l} 
Reference \\
Type
\end{tabular} & \begin{tabular}{l} 
Mapped as 8 bits output \\
\(0 x\) \\
or \\
Mapped as 1 register output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 8 bits output \\
\(\% \mathrm{Mx}\) \\
or
\end{tabular} \\
\hline Output Type & BIN/BCD & \begin{tabular}{l} 
Mapped as 1 word output \\
\(\% M W x\)
\end{tabular} \\
\hline
\end{tabular}

\section*{B849-016 48 Vac/Vdc Input (True High)}

\section*{At a Glance}
\(\begin{array}{ll}\text { Purpose } & \text { This chapter describes the functional and physical characteristics of the B849-016 } \\ 48 \mathrm{~V} \mathrm{ac} / \mathrm{dc} \text { (True High) Input Module. }\end{array}\)
What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B849-106 48 Vac/Vdc Input (True High), Overview & 464 \\
\hline B849-016 48 Vac/Vdc Input (True High), Field Connections & 466 \\
\hline 849-016 48 Vac/Vdc Input (True High), Specifications & 467 \\
\hline B849-016 Parameter Configuration & 468 \\
\hline
\end{tabular}

\section*{B849-106 48 Vac/Vdc Input (True High), Overview}

\section*{General Characteristics}

The B849-016 \(48 \mathrm{~V} \mathrm{ac} / \mathrm{dc}\) input module senses OFF and ON input signals from its field circuitry, converting them to logic levels used by a PLC. The module's 16 input circuits are divided into two groups of eight channels, each group totally isolated from the other.
Although both groups use common return wires, none has a definite relationship to system ground unless established in the user's field circuitry. Since both groups nominally employ independent power return sources, both ac and dc powered field circuits may input to the module at the same time.

Note: Reversal of external signal polarity will not cause channel circuit damage as circuit design is indifferent to accidental polarity reversal.

\section*{Simplified Block Diagram}

Following is a simplified block diagram of the B849-016 48 V ac/dc Input Module.


When the user's ac/dc powered field circuit goes ON - as the result of a limit for example - it presents the field power voltage at the modules appropriate input channel. When the input voltage meets or exceeds the module's guaranteed ON threshold, the resulting voltage turns the channel monitor lamp ON, current flows through the bridge rectifier and subsequently the opto-isolator (OPTO-ISOL) circuit. Given a nominal \(115 \mathrm{Vac} / 125 \mathrm{Vdc}\) field power supply and a \(\mathrm{k} \Omega\) maximum input source impedance, the module's channel monitor lamps will indicate ON and OFF when input voltages are \(80 \mathrm{Vac} / 85 \mathrm{Vdc}\) for the high level ON ; and \(35 \mathrm{Vac} / 40 \mathrm{Vdc}\) for the low level OFF respectively.
The optical energy goes to the communications board (COMM BOARD) where the OURBUS output register is set to represent the field circuit's ON state. As long as the field input status remains true, the module will communicate this status each time it is polled by the controller. Total scan time may be as long as 250 ms . The user should not attempt to monitor events with a repetition rate greater than \(1 / \mathrm{s}\) without analyzing his actual system, program, and scan time.

Note: It is possible to have the ACTIVE indicator lit with one or more input channels working improperly.

\section*{B849-016 48 Vac/Vdc Input (True High), Field Connections}

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal
Numbering and
Input
Connections
The following diagram shows terminal numbering and input connections for the B849-016 48 V ac/dc Input Module.


Note: To use both input groups with a single power supply, jump terminals \#9 and \#19.

\section*{849-016 48 Vac/Vdc Input (True High), Specifications}

\section*{Specification Table}

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{849-016 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & \(48 \mathrm{Vac} / \mathrm{dc}\) input \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 41-53 Vac / 47-63 Hz 39-58 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Inputs/group} & 8 \\
\hline Maximum Input Voltage & Continuous & \(53 \mathrm{Vac} / 58 \mathrm{Vdc} 63 \mathrm{Vac} / 70 \mathrm{Vdc}\) (for 10 s maximum) 110 Vpk (for 10 ms max) \\
\hline ON Conditions & ON Conditions & \(\geq 41 \mathrm{Vac}\) or 39 Vdc w/Input Source Impedance of 1 K maximum input current 7.5 mA 2 mA \\
\hline \multicolumn{2}{|l|}{OFF Conditions} & < \(15 \mathrm{Vac} / 20 \mathrm{Vdc}<53 \mathrm{Vac}\) w/Input Source Impedance \(\geq 25 \mathrm{k}<58 \mathrm{Vdc}\) w/Input Source Impedance \(\geq 50 \mathrm{k}\) \\
\hline \multicolumn{2}{|l|}{ON Current} & 8 mA (max), 4.5 mA (minimum) \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 6 ms \\
\hline & ON \(\rightarrow\) OFF & 18 ms \\
\hline \multirow[t]{3}{*}{Power Required} & +5V & 40 mA \\
\hline & +4.3V & 1 mA \\
\hline & -5V & 15 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & \(48 \mathrm{Vac} / \mathrm{dc}, 300 \mathrm{~mA}\) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline
\end{tabular}

\section*{B849-016 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window
48V AC/DC IN


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits input & Mapped as 16 bits input \\
Type & 1 x \\
or \\
& \begin{tabular}{l} 
Mapped as 1 register input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 1 word input \\
\(\%\) \%Wx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B853-016 115 Vac/125 Vdc Input (True High)}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of Input Module 853-016 \(115 \mathrm{Vac} / 125 \mathrm{Vdc}\).}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B853-016 115 Vac/125 Vdc Input (True High), Overview & 470 \\
\hline B853-016 115 Vac/125 Vdc Input (True High), Field Connections & 472 \\
\hline B853-016 115 Vac/125 Vdc Input (True High), Specifications & 473 \\
\hline B853-016 Parameter Configuration & 474 \\
\hline
\end{tabular}

\section*{B853-016 115 Vac/125 Vdc Input (True High), Overview}

\section*{General Characteristics}

True High Input Module B853-016 115-Vac/125-Vdc senses OFF and ON input signals from its field circuitry, converting them to logic levels used by a Modicon PLC. The module's 16 input circuits are divided into two groups of eight channels, each group being totally isolated from the other.
Although both groups use common return wires, none has a definite relationship to system ground unless established in the user's field circuitry. Since both groups nominally employ independent power return sources, both ac and dc powered field circuits may directed to the module at the same time.

Note: Reversal of external signal polarity will not cause channel circuit damage as the circuit design is indifferent to accidental polarity reversal.

Following is a simplified schematic of the True High Input Module B853-016 115-Vac/125-Vdc


When the user's ac/dc powered field circuit goes ON—as the result of a limit switch, for example - it presents the field power voltage at the module's appropriate input channel. When the input voltage meets or exceeds the module's ON threshold, the resulting voltage turns the channel monitor lamp ON, current flows through the bridge rectifier and subsequently the opto-isolator (OPTO-ISOL) circuit.
Given a nominal \(115 \mathrm{Vac} / 125 \mathrm{Vdc}\) field power supply and a \(\mathrm{k} \Omega\) maximum input source impedance, the module's channel monitor lamps will indicate ON and OFF when input voltages are \(80 \mathrm{Vac} / 85 \mathrm{Vdc}\) for the high level ON ; and \(35 \mathrm{Vac} / 40 \mathrm{Vdc}\) for the low level OFF respectively.
The optical energy goes to the communications board (COMM BOARD) where the OURBUS output register is set to represent the field circuit's ON state. As long as the field input status remains true, the module will communicate this status each time it is polled by the controller. Total scan time may be as long as 250 ms . The user should not attempt to monitor events with a repetition rate greater than \(1 / \mathrm{s}\) without analyzing his actual system, program, and scan time.

Note: It is possible to have the ACTIVE indicator lit with one or more input channels working improperly.

\section*{B853-016 115 Vac/125 Vdc Input (True High), Field Connections}

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Input Connections

The following diagram shows terminal numbering and input connections for the B853-016 115 Vac/125 Vdc (True High) Input Module.


Note: To use both input groups with a single power supply, jump terminals \#9 and \#19.

\section*{B853-016 115 Vac/125 Vdc Input (True High), Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{853-016 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & \(115 \mathrm{Vac} / 125 \mathrm{Vdc}\) input \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 80-130 Vac/47-63 Hz; 85-150 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Inputs/group} & 8 \\
\hline \multirow[t]{2}{*}{Maximum Input Voltage} & Continuous & \(130 \mathrm{Vac} / 150 \mathrm{Vdc}\) \\
\hline & Surge & \(150 \mathrm{Vac} / 180 \mathrm{Vdc}\) for \(10 \mathrm{~s} ; 280 \mathrm{~V}\) peak for 10 ms \\
\hline \multicolumn{2}{|l|}{ON Conditions} & \(\geq 80 \mathrm{Vac}\) or 85 Vdc ; w/Input Source Impedance of 1 K maximum input current 9 mA 2 mA \\
\hline \multicolumn{2}{|l|}{OFF Conditions} & < \(35 \mathrm{Vac} / 40 \mathrm{Vdc}\); < 130 Vac w/Input Source Impedance \(\geq 40 \mathrm{~K} ;<150 \mathrm{Vdc}\) w/Input Source Impedance \(\geq 80 \mathrm{~K}\) \\
\hline \multicolumn{2}{|l|}{ON Current} & 7 mA (max), 4.5 mA (min) \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & 6 ms \\
\hline & ON \(\rightarrow\) OFF & 18 ms \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 40 mA \\
\hline & +4.3 V & 1 mA \\
\hline & -5 V & 15 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline
\end{tabular}

\section*{B853-016 Parameter Configuration}

Parameter and
Default Values

Parameter Configuration Window


利 \(1: 140\) XBP. \(3:\) B853

Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits input & Mapped as 16 bits input \\
Type & 1 x \\
& \begin{tabular}{l} 
\%rx \\
Mapped as 1 register input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 1 word input \\
\%IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{855-016 Intrinsically Safe Input}

\section*{48}

\section*{At a Glance}
\(\begin{array}{ll}\text { Purpose } & \text { This chapter describes the functional and physical characteristics of the 855-016 } \\ \text { Intrinsically Safe Input Module. }\end{array}\)
What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|r|}
\hline Topic & Page \\
\hline B855-016 Intrinsically Safe Input, Overview & 476 \\
\hline B855-016 Intrinsically Safe Input, Installation & 477 \\
\hline B855-016 Intrinsically Safe Input, Specifications & 481 \\
\hline B855-016 Parameter Configuration & 483 \\
\hline
\end{tabular}

\section*{B855-016 Intrinsically Safe Input, Overview}
\begin{tabular}{ll} 
General & \begin{tabular}{l} 
The B855-016 Intrinsically Safe (fully isolated) Input Module accepts 16 switch \\
Characteristics \\
closures or low impedance discrete inputs less than \(100 \Omega\) and operates in any 800
\end{tabular} \\
& Series I/O slot. \\
The B855 module monitors hazardous area contact closures. The B855 can operate \\
in either continuously or intermittently hazardous environments containing \\
acetylene, hydrogen, ethylene or methane gases; metal, coal or grain dust, and \\
fibers. The B855-016 module meets Factory Mutual Standard FM 3610 for \\
Intrinsically Safe Connections to Field Side Associated Apparatus. \\
The B855-016 module has 16 discrete inputs. The inputs work in the range 11.4- \\
12.6 Vdc, True Low.
\end{tabular}

\section*{B855-016 Intrinsically Safe Input, Installation}

\section*{Installation Procedure}

Installation of the B855-016 module involves unpacking the module, wiring the field connector, installing key pins, and mounting the module into the housing.
\begin{tabular}{|r|l|}
\hline Step & Procedure \\
\hline 1 & \begin{tabular}{l} 
Remove the module from its shipping box and check for damage. If damaged, contact \\
your vendor for instructions.
\end{tabular} \\
\hline 2 & Ensure power to housing is OFF. \\
\hline 3 & Designate the housing slot for this module. \\
\hline 4 & \begin{tabular}{l} 
Locate required connector assembly (Modicon Part number AS-8535-000). This \\
assembly consists of two 20-pin connectors.
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Referring to the hazardous area and safe area wiring diagram below, connect field \\
side wiring to proper pins on the field connector. You must wire the hazardous area \\
connections, pins 9-40, separately from the safe area connections. Wire the dc \\
source to the safe area connections, pins 1 and 2. Refer to Caution, below.
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
Refer to the Intrinsically Safe Barrier Strip diagram below. Remove the two Phillips \\
head screws from the top 20-pin connector of the AS-8535-000. Take the intrinsically \\
safe barrier strip out of the white bag attached to the handle of the module. Place the \\
intrinsically safe barrier strip on the left side of the top 20-pin connector between pins \\
3, and 8. Make sure the raised edge of the intrinsically safe barrier strip is facing away \\
from the black wiring duct. Insert this subassembly inside the black wire duct while \\
aligning the two screw holes. Insert the two Phillips head screws and tighten them \\
down. Note: You must use key pins (shipped with this module) to meet Factory \\
Mutual's requirements.
\end{tabular} \\
\hline 7 & \begin{tabular}{l} 
Referring to typical field circuit connections illustration, below, connect field side \\
wiring to proper pins on the field connector. Note: The external 12 Vdc (5\%) power \\
supply for the module should be a minimum of 1.0 A
\end{tabular} \\
\hline 8 & \begin{tabular}{l} 
Insert the module into the housing, firmly but carefully, seating the edge connector in \\
the backplane.
\end{tabular} \\
\hline 9 & \begin{tabular}{l} 
Secure module to housing using captive slotted mounting screws at the top and \\
bottom of the module front panel.
\end{tabular} \\
\hline 10 & \begin{tabular}{l} 
Note: \\
To meet Factory Mutual's requirements, Schneider Electric recommends the MD- \\
\(8741-000\) Intrinsically Safe Barrier Strip.
\end{tabular} \\
\hline
\end{tabular}

The following illustration shows the B855-016 hazardous area and safe area wiring.


The following illustration shows the B855-016 intrinsically safe barrier strip.


The following illustration shows the typical field circuit connections.


SAFE AREA
HAZARDOUS AREA

\section*{B855-016 Intrinsically Safe Input, Specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{B855-016, Specification Table} \\
\hline \multicolumn{2}{|l|}{Description} & \multicolumn{3}{|l|}{12 Vdc intrinsically safe input (true low)} \\
\hline \multicolumn{2}{|l|}{Number of Points} & \multicolumn{3}{|l|}{16 isolated} \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & \multicolumn{3}{|l|}{11-4-12.6 Vdc} \\
\hline \multicolumn{2}{|l|}{Number of Groups} & \multicolumn{3}{|l|}{1} \\
\hline \multicolumn{2}{|l|}{Inputs/group} & \multicolumn{3}{|l|}{16} \\
\hline \multirow[t]{2}{*}{Maximum Input Voltage} & Continuous & \begin{tabular}{l}
Continuous \\
12 Vdc 5\%
\end{tabular} & & \\
\hline & Surge & \multicolumn{3}{|l|}{500 Vdc for 3 ms} \\
\hline \multicolumn{2}{|l|}{ON State Conditions} & \multicolumn{3}{|l|}{\(100 \Omega\) or less total impedance ( \(3.9 \mathrm{~mA} @ 12 \mathrm{Vdc}\) )} \\
\hline \multicolumn{2}{|l|}{OFF State Conditions} & \multicolumn{3}{|l|}{An open circuit, no less than \(100,000 \Omega(75 \mathrm{~mA})\) approx. 8.95 V present on + lead} \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & OFF \(\rightarrow\) ON & \multicolumn{3}{|l|}{1 ms} \\
\hline & ON \(\rightarrow\) OFF & \multicolumn{3}{|l|}{5 ms} \\
\hline \multirow[t]{3}{*}{Power Required} & +5V & \multicolumn{3}{|l|}{80 mA} \\
\hline & +4.3V & \multicolumn{3}{|l|}{1.5 mA} \\
\hline & -5V & \multicolumn{3}{|l|}{0 mA} \\
\hline \multicolumn{2}{|l|}{Leakage Current} & \multicolumn{3}{|l|}{\(<1.5 \mathrm{~mA}\)} \\
\hline \multicolumn{2}{|l|}{Wattage Rating on the Module} & \multicolumn{3}{|l|}{1.8 W} \\
\hline \multicolumn{2}{|l|}{Maximum Input Voltage @ Source Inputs} & \multicolumn{3}{|l|}{Not to exceed 500 Vdc for 3 ms to user source terminals} \\
\hline \multicolumn{2}{|l|}{Module Supply Voltage In} & \multicolumn{3}{|l|}{11.4-12.6 Vdc, 0.5 A max. load working 80 mA inrush current Minimum recommended power supply: 1.0 A} \\
\hline \multirow[t]{4}{*}{Maximum Impedance Limitations} & \multicolumn{2}{|l|}{Group} & L Inductance & C Capacitance \\
\hline & \multicolumn{2}{|l|}{A \& \(B\)} & 80 mH & 1.0 mf \\
\hline & \multicolumn{2}{|l|}{C} & 300 mH & 3.0 mf \\
\hline & \multicolumn{2}{|l|}{D} & 700 mH & 8.0 mf \\
\hline \multicolumn{5}{|l|}{Note: These are Factory Mutual requirements. Please consult with your vendors regarding field devices, wiring, and barriers to ensure compliance.} \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & \multicolumn{3}{|l|}{AS-8535-000} \\
\hline \multicolumn{2}{|l|}{Factory Mutual FM 3610} & \multicolumn{3}{|l|}{Requires use of key pins and MD-8741-000 barrier strip included with the module} \\
\hline
\end{tabular}

\section*{B855-016 Parameter Configuration}

Parameter and
Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits input & \begin{tabular}{l} 
Mapped as 16 bits input \\
Type \\
1 x
\end{tabular} \\
& \begin{tabular}{l} 
Mr \\
Mapped as 1 register input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 1 word input \\
\(\%\) IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B862-001 Register Output}

\section*{49}

\section*{At a Glance}
\begin{tabular}{l|l|l|} 
Purpose & \multicolumn{1}{l}{\begin{tabular}{l} 
This chapter describes the functional and physical characteristics of the B862-001 \\
Register Output Module.
\end{tabular}} \\
\cline { 2 - 4 } \begin{tabular}{l} 
What's in this \\
Chapter?
\end{tabular} & This chapter contains the following topics: & Page \\
\hline Topic & 486 \\
\hline B862-001 Register Output, Overview & 487 \\
\hline B862-001 Register Output, Switch Settings & 488 \\
\hline B862-001 Register Output, Field Connections & 491 \\
\hline B862-001 Register Output, Specifications & 492 \\
\hline B862-001 Parameter Configuration & \\
\hline
\end{tabular}

\section*{B862-001 Register Output, Overview}

Overview
The B862-001 register output module provides a 5 V TTL or CMOS-compatible interface between a PLC and peripheral field devices. The B862-001 register output module operates in either BCD or binary mode.
The desired mode is operator selectable, with the 16 -bit output either having BCD values in the range 0000 to 9999 or binary output in the range 0000 (HEX) to FFFF (HEX).
The B862-001 is a 4-channel register output module with four 16-bit registers. A channel is defined as a 16 -bit data path. The channels can be configured as 4 BCD or 4 binary registers via an appropriate switch setting.
The module is organized in a group strobe arrangement with the 16 datalines associated at a given moment with one of the 4 strobe lines. Each strobe line addresses one of the devices on the data bus and enables it to transmit data to a given peripheral device to the exclusion of the other devices. The data lines are routed to all devices. The B862-001is operated in module-select mode. In moduleselect mode, all 4 data registers are transferred in a single OURBUS cycle. The following is a simplified block diagram of the unit.


\section*{B862-001 Register Output, Switch Settings}

\section*{Switch Settings}

Two toggle switches are located at the top left of the module and are used to determine the type of communication with external devices. Both switches are user selectable.
1. Bin/BCD Switch

This toggle switch determines whether the output data is to be interpreted by the target devices as a BCD or a binary value.
2. Strobes Active Hi/Lo Switch

This toggle switch allows selection of either true-hi or true-lo for strobing output data.

Note: The relation between the I/O map selection, the BCD/binary switch setting, and the results at the output are summarized in the following table:

Table
The following table identifies the relationship between the switch and I/O Map facility.
\begin{tabular}{|l|l|l|}
\hline I/O Map Selection & B862 Switch Setting & Result \\
\hline Binary & BCD & BCD \\
\hline Binary & Binary & Binary \\
\hline BCD & BCD & Erroneous \\
\hline BCD & Binary & BCD \\
\hline
\end{tabular}

\section*{B862-001 Register Output, Field Connections}

Terminal Numbering and Output Functions

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows how to field connect the unit.


\section*{Pull-up Resistor Connection}

Pull-up resistors must be installed at the active device end to use the B862 output module. The value of the pull-up resistor depends upon the number of devices that are attached to the data bus, as explained below. Each output meets 0.4 V maximum at 16 mA for a logic low and 3.3 V minimum at 16 mA for a logic high. If the current limit has been exceeded, the pull-up resistor values should be adjusted within specification; otherwise, spurious results may be obtained.
The following illustration indicates how the resistors are connected at the device end. For a single device consisting of 16 data lines, 161 k resistors are required, or, one 1 k resistor per data line. As additional devices are added to the data bus, the value of the pull-up resistor must be increased by 1 k . In other words, if two devices are used, the pull-up resistor must be 2 k , three devices require a 3 k pull-up, and so on, with the maximum number of 8 devices requiring 8 k of pull-up for each data line.

Pull-up Resistor Connection


Note: Increase pull-up resistor value by 1 k for each additional device.

\section*{B862-001 Register Output, Specifications}

\author{
Specification Table
}

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B862-001 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & TTL register output \\
\hline \multicolumn{2}{|l|}{Number of Points} & 4 channels, 16 data lines \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 5 V TTL \\
\hline \multicolumn{2}{|l|}{Number of Groups} & N/A \\
\hline \multicolumn{2}{|l|}{Outputs/group} & N/A \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Guaranteed Min. Levels}} & High State > 3.5 VDC \\
\hline & & Low State < 0.4 VDC while sinking 16 mA \\
\hline \multicolumn{2}{|l|}{Strobe Output Power} & Two TTL loads @ 5 VDC \\
\hline \multicolumn{2}{|l|}{Strobe Width Timing} & \(200 \mu \mathrm{~s} \pm 10 \%\) \\
\hline \multicolumn{2}{|l|}{Response Time} & 11.3 ms between an OURBUS write and field update \\
\hline \multirow[t]{2}{*}{Power Required} & +5 VDC I/O & 100 mA max. \\
\hline & +4.3 VDC I/O & 100 mA max. \\
\hline \multicolumn{2}{|l|}{External Power Supply} & +5 VDC is required for pull-up resistor Vcc \\
\hline \multirow[t]{3}{*}{Field Device Requirements} & TTL output level & \[
\begin{aligned}
& \text { Low: < 0.8 VDC @ } 1.6 \mathrm{~mA} \\
& \text { High: > } 2.4 \text { VDC @ } 40 \mu \mathrm{~A}
\end{aligned}
\] \\
\hline & CMOS output level & Low: < 1.6 VDC @ \(0.3 \mu \mathrm{~A}\) \\
\hline & & High: > 3.3 VDC @ \(0.3 \mu \mathrm{~A}\) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

Note: All user field devices must have outputs that feature latched, tristate, or open collector logic.

Note: The user must provide \(1.0 \mathrm{k} \Omega \pm 10 \%\) pull-up resistors for each strobe line.

\section*{B862-001 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window
REG 4 CH OUT


而 \(1: 140\) XBP. \(3:\) B862
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 64 & 4 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 64 bits output & Mapped as 64 bits output \\
Type & \(0 x\) \\
or & \begin{tabular}{l} 
Mapped as 4 registers output \\
or \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 4 words output \\
\(\% M W x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B863-032 Monitored 24 Vdc Input}

\section*{50}

\section*{At a Glance}
\begin{tabular}{l|l|l|} 
Purpose & \multicolumn{1}{l}{\begin{tabular}{l} 
This chapter describes the functional and physical characteristics of the Modicon \\
B863-032 Monitored 24 Vdc Input Module.
\end{tabular}} \\
\begin{tabular}{lll} 
What's in this \\
Chapter?
\end{tabular} & This chapter contains the following topics: & Page \\
\hline Topic & 494 \\
\hline B863-032 Monitored 24 Vdc Input, Overview & 495 \\
\hline B863-032 Monitored 24 Vdc Input, Field Connections & 496 \\
\hline B863-032 Monitored 24 Vdc Input, Specifications & 497 \\
\hline B863-032 Parameter Configuration & \\
\hline
\end{tabular}

\section*{B863-032 Monitored 24 Vdc Input, Overview}

\section*{General Characteristics}

\section*{Simplified Schematic}

The B863-032 Monitored dc Input Module (B863) is a 32 point, 24 Vdc , true high, 800 Series, module capable of determining the state of switches, relays, solenoids, lamps, proximity switches, and other 24 Vdc powered devices. In addition, the B863-032 monitors itself to insure its ability to detect high or low states at its inputs. This feature is designed to provide an extra margin of reliability in safety shutdown systems. This is accomplished with a module resident diagnostic test. The diagnostics verify the module's functionality by momentarily forcing all inputs to a low state followed by a high state. This forcing function is transparent to the input source.

Following is a simplified schematic of the B863-032 Monitored 24 Vdc Input Module.


This diagnostic test is performed at a rate of \(1 / \mathrm{s}\), and takes less than 1 ms . The inability of an input to detect a low or high state during diagnostics, results in the reporting of a fault to the controller, and the flashing of the ACTIVE LED. Digital filtering is performed on all inputs to reduce the occurrence of nuisance faults. Communication between the module and the controller consists of four words. Two words contain the state of each input, and the other two words contain the fault status of each input. Within the state words, a high, or one indicates a ON condition. Within the fault status words, a high, or one indicates a fault at the respective input.

\section*{B863-032 Monitored 24 Vdc Input, Field Connections}

\section*{Overview}

Terminal Numbering and Input
Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B863-032 Monitored 24 Vdc Input Module.

INPUT 1 INPUT 2 INPUT 3 INPUT 4 INPUT 5 INPUT 6 INPUT 7 INPUT 8 INPUT 9 INPUT 10 INPUT 11 INPUT 12 INPUT 13 INPUT 14 INPUT 15 INPUT 16 Not Connected Field Source Not Connected Field Return (see note)


INPUT 17 INPUT 18 INPUT 19 INPUT 20 INPUT 21 INPUT 22 INPUT 23 INPUT 24 INPUT 25 INPUT 26 INPUT 27 INPUT 28 INPUT 29
INPUT 30 INPUT 31 INPUT 32 Not Connected Not Connected Not Connected Field Return (see note)


NOTE: Pins 20 and 40 are internally connected together

\section*{B863-032 Monitored 24 Vdc Input, Specifications}

\section*{Specifications B863-032, Specification Table}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & 24 Vdc high density monitored input \\
\hline \multicolumn{2}{|l|}{Type of Operation} & True high \\
\hline \multicolumn{2}{|l|}{Number of Points} & 32 \\
\hline \multicolumn{2}{|l|}{Operating Range Voltage} & 18-30 Vdc true high, 24 Vdc nominal \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 2 \\
\hline \multicolumn{2}{|l|}{Inputs/group} & 16 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{On State Conditions}} & 18 Vdc minimum @ the input, \\
\hline & & 30 Vdc maximum @ the input, \\
\hline & & Typical on state current: 4 mA \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Off State Conditions}} & 6 Vdc maximum @ the input, \\
\hline & & Typical OFF state current: 1 mA \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & 10 ms \\
\hline & ON \(\rightarrow\) OFF & 10 ms \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 0 mA \\
\hline & +4.3V & 0 mA \\
\hline & -5 V & 0 mA \\
\hline \multirow[t]{2}{*}{External Power Supply} & Operating Current & 20 mA of field power plus point input channel \\
\hline & Operating Voltage & 18-30 Vdc true high, 24 Vdc nominal \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

\section*{B863-032 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


酮 \(1: 140\) XBP . \(3:\) B863
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 64 & 4 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 64 bits input & Mapped as 64 bits input \\
Type & \(1 x\) & \begin{tabular}{l} 
\%Ix \\
or \\
or \\
Mapped as 4 registers input \\
\(3 x\)
\end{tabular} \\
\hline Input Type & BIN/BCD & \%IWx
\end{tabular}

\section*{B863-132 24 Vdc Input}

\section*{At a Glance}

Title of overview This chapter describes the functional and physical characteristics of the B863-132 block 24 Vdc Input Module.

What's in this This chapter contains the following topics:

\section*{Chapter?}
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B863-132 24 Vdc Input, Overview & 500 \\
\hline B863-132 24 Vdc Input, Switch Settings & 501 \\
\hline B863-132 24 Vdc Input, Field Connections & 502 \\
\hline B863-132 24 Vdc Input, Configuration & 503 \\
\hline B863-132 24 Vdc Input, Specifications & 504 \\
\hline B863-132 Parameter Configuration & 505 \\
\hline
\end{tabular}

\section*{B863-132 24 Vdc Input, Overview}

\section*{General Characteristics}

The B863-132 24 Vdc Input Module senses and converts switched input signals into logic voltage levels used by the PLC. This module senses and reports broken wire faults. The module is designed for safety applications whereby it monitors essential field wiring. This module satisfies applications where connectivity diagnostics are important to the process. A logic side LED indicates the logic state that is written into the state table.

Simplified \(\quad\) Following is a simplified schematic of the B863-132 24 Vdc Input Module.
Schematic


\section*{B863-132 24 Vdc Input, Switch Settings}

Switch Settings A four-position DIP switch located on the rear of the module (see diagram below) is used to select broken wire testing. Each individual switch relates to one of the four groups of eight input points.
For example, DIP-Switch position \#1 when set to OFF senses for broken wire faults for group 1 and so on; when set to ON no fault is reported.
Only Binary should be used when operating module in line test mode. Do not use BCD.
The line test dip-switch settings are shown below.
LINE TEST SWITCH FOUR-POSITION DIP SWITCH TOP OF MODULE

\begin{tabular}{|c|c|}
\hline SWITCHES & FUNCTIONS \\
\hline SW1 = 0 & GROUP 1, LINE TEST \\
\hline \(=1\) & GROUP 1, NO TEST \\
\hline SW2 \(=0\) & GROUP 2, LINE TEST \\
\hline \(=1\) & GROUP 2, NO TEST \\
\hline SW3 \(=0\) & GROUP 3, LINE TEST \\
\hline \(=1\) & GROUP 3, NO TEST \\
\hline SW4 = 0 & GROUP 4, LINE TEST \\
\hline = 1 & GROUP 4, NO TEST \\
\hline
\end{tabular}

Note: When using binary and BCD inputs remember that input 1 is the MSB and input 32 is the LSB.

\section*{B863-132 24 Vdc Input, Field Connections}

Overview

Terminal Numbering and Input Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B863-132 24 Vdc Input Module.


\section*{B863-132 24 Vdc Input, Configuration}

\section*{Configuration Guidelines}

This module appears as a B863 module when configured. This means the module requires four 16-bit words ( \(1 \mathbf{x}\) registers), as shown in the data registers diagram below. The first two words contains the state of the input points. The second two words contain the condition of the field wiring. If a broken wire is detected on input point, then a one is displayed in input register ( \(1 \mathbf{x}+32\) ) at its position. When the fault is fixed, a zero appears in the bit. A one indicates a detected fault, whereas, a zero indicates normal operation of that input point.

\section*{B863-132 24 Vdc Input, Specifications}

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & 24 Vdc input \\
\hline \multicolumn{2}{|l|}{Number of Points} & 32 \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 4 \\
\hline \multicolumn{2}{|l|}{Inputs/group} & 8 \\
\hline \multicolumn{2}{|l|}{Working Voltage} & 0-30 Vdc \\
\hline \multicolumn{2}{|l|}{Reference Voltage} & 19.2-30 Vdc \\
\hline \multicolumn{2}{|l|}{Reference Current} & 9-15 mA/group \\
\hline \multicolumn{2}{|l|}{Threshold Voltage} & 11-15 Vdc \\
\hline \multicolumn{2}{|l|}{External Resistor} & (Broken wire detect) \(6.2 \mathrm{k} \Omega+10 \%\), 1 external resistor/input point, resistor across contactor for nominally operated 24 Vdc system \\
\hline \multirow[t]{2}{*}{Input Current} & Low State & \(1.8-3 \mathrm{~mA}\) \\
\hline & High State & 5.75-7.1 mA \\
\hline \multirow[t]{4}{*}{Transition Time} & \multirow[t]{2}{*}{ON} & V in \(=20 \mathrm{Vdc}: 200 \mathrm{~ms}\) minimum \\
\hline & & V in \(=30 \mathrm{Vdc}: 25 \mathrm{~ms}\) minimum \\
\hline & \multirow[t]{2}{*}{OFF} & V in \(=20 \mathrm{Vdc}: 100 \mathrm{~ms}\) maximum \\
\hline & & V in \(=30 \mathrm{Vdc}\) : 250 ms maximum \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Maximum \\
Response Time
\end{tabular}} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & \multirow[t]{2}{*}{2 ms , contact opening or closing, 100 ms maximum fault detection time} \\
\hline & ON \(\rightarrow\) OFF & \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 350 mA \\
\hline & +4.3 V & 10 mA \\
\hline & -5 V & 0 mA (not used) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

\section*{B863-132 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


ㅈाnा 1:140 XBP. \(3:\) B863
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 64 & 4 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 64 bits input & Mapped as 64 bits input \\
Type & 1 x & \%Ix \\
& or & or \\
& Mapped as 4 registers input & Mapped as 4 words input \\
& \(3 x\) & \(\%\) IWx \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B864-001 Register Output}

\section*{52}

\section*{At a Glance}
\begin{tabular}{l|l|l|} 
Purpose & \multicolumn{1}{l}{\begin{tabular}{l} 
This chapter describes the functional and physical characteristics of the B864-001 \\
Register Output Module.
\end{tabular}} \\
\cline { 2 - 4 } \\
What's in this \\
Chapter? & This chapter contains the following topics: & Page \\
\hline Topic & 508 \\
\hline B864-001 Register Output, Overview & 509 \\
\hline B864-001 Register Output, Switch Settings & 510 \\
\hline B864-001 Register Output, Field Connections & 513 \\
\hline B864-001 Register Output, Specifications & 514 \\
\hline B864-001 Parameter Configuration &
\end{tabular}

\section*{B864-001 Register Output, Overview}

Overview
The B864-001 register output module provides a 5 V TTL or CMOS-compatible interface between a PLC and peripheral field devices. The B864-001 register output module operates in either BCD or binary mode. The desired mode is operator selectable, with the 16-bit output either having BCD values in the range 0000-9999 or binary output in the range \(0000-\) FFFF hex.
The B864-001 is an eight-channel register output module with eight 16-bit registers. A channel is defined as a 16-bit data path. The channels can be configured as eight BCD or eight binary registers via the appropriate switch setting.
The module is organized in a group strobe arrangement with the 16 datalines associated at a given moment with one of the eight strobe lines. Each strobe line addresses one of the devices on the data bus and enables it to transmit data to a given peripheral device to the exclusion of the other devices. The data lines are routed to all devices. The B864-001is operated in module-select mode. In moduleselect mode, all eight data registers are transferred in a single ourbus cycle. The following is a simplified block diagram of the unit.


\section*{B864-001 Register Output, Switch Settings}

Switch Settings Two toggle switches are located at the top of the module and are used to determine the type of communication with external devices. Both switches are user selectable. 1. Bin/BCD Switch

This toggle switch determines whether the output data is to be interpreted by the target devices as a BCD or a binary value.
2. Strobes Active Hi/Lo Switch

This toggle switch allows selection of either true-hi or true-lo for strobing output data.

Note: The relation between the I/O map selection, the BCD/binary switch setting, and the results at the output are summarized in the following table:

Table The following table identifies the relationship between the switch and I/O Map facility.
\begin{tabular}{|l|l|l|}
\hline I/O Map Selection & B864 Switch Setting & Result \\
\hline Binary & BCD & BCD \\
\hline Binary & Binary & Binary \\
\hline BCD & BCD & Erroneous \\
\hline BCD & Binary & BCD \\
\hline
\end{tabular}

\section*{B864-001 Register Output, Field Connections}

\section*{Terminal Numbering and Output Functions}

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows how to field connect the unit.
\begin{tabular}{|c|c|c|c|}
\hline NOT USED & (1) & NOT USED & (21) \\
\hline NOT USED & (2) & NOT USED & (2) \\
\hline NOT USED & (3) & NOT USED & (23) \\
\hline DATA 1 & (4) & DATA 15 & (24) \\
\hline DATA 2 & (5) & DATA 16 & (25) \\
\hline DATA 3 & (6) & LOGIC GND & (26) \\
\hline DATA 4 & (7) & STROBE 1 & (27) \\
\hline DATA 5 & (8) & StROBE 2 & (28) \\
\hline DATA 6 & (9) & StRobe 3 & (2) \\
\hline DATA 7 & (10) & STROBE 4 & (30) \\
\hline DATA 8 & (11) & StRobe 5 & (3) \\
\hline DATA 9 & (12) & StROBE 6 & (32) \\
\hline DATA 10 & (13) & STROBE 7 & (3) \\
\hline DATA 11 & (14) & STROBE 8 & (34) \\
\hline DATA 12 & (15) & LOGIC GND & (35) \\
\hline DATA 13 & (16) & GND & (36) \\
\hline DATA 14 & (17) & NOT USED & (37) \\
\hline NOT USED & (18) & NOT USED & (38) \\
\hline NOT USED & (19) & NOT USED & (3) \\
\hline NOT USED & (2) & NOT USED & (40) \\
\hline
\end{tabular}

\section*{Pull-up Resistor} Connection

Pull-up resistors must be installed at the active device end to use the B864 output module. The value of the pull-up resistor depends upon the number of devices that are attached to the data bus, as explained below. Each output meets 0.4 V maximum at 16 ma for a logic low and 3.3 V minimum at 16 mA for a logic high. If the current limit has been exceeded, the pull-up resistor values should be adjusted within specification; otherwise, spurious results may be obtained.
The following illustration indicates how the resistors are connected at the device end. For a single device consisting of 16 data lines, 161 k resistors are required, or, one 1 k resistor/data line. As additional devices are added to the data bus, the value of the pull-up resistor must be increased by 1 k . In other words, if two devices are used, the pull-up resistor must be 2 k , three devices require a 3 k pull-up, and so on, with the maximum number of 8 devices requiring 8 k of pull-up for each data line.

Pull-up Resistor Connection


Note: Increase pull-up resistor value by 1 k for each additional device.

\section*{B864-001 Register Output, Specifications}

\author{
Specification Table
}

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Module B864-001, Specification Table} \\
\hline \multicolumn{2}{|l|}{Description} & TTL register output \\
\hline \multicolumn{2}{|l|}{Number of Points} & 8 channels, 16 data lines \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 5 V TTL \\
\hline \multicolumn{2}{|l|}{Number of Groups} & N/A \\
\hline \multicolumn{2}{|l|}{Outputs/group} & N/A \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Guaranteed Min. Levels}} & High State>3.5 Vdc \\
\hline & & Low State<0.4 Vdc while sinking 16 mA \\
\hline \multicolumn{2}{|l|}{Strobe Output Power} & Two TTL loads @ 5 Vdc \\
\hline \multicolumn{2}{|l|}{Strobe Width Timing} & 200 s 10\% \\
\hline \multicolumn{2}{|l|}{Module Throughput} & 11.3 ms \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 100 mA \\
\hline & +4.3 V & 100 mA \\
\hline & -5 V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & A +5 Vdc external power supply is required for pull-up resistor VCC \\
\hline \multirow[t]{4}{*}{Field Device Requirements} & & Output Level \\
\hline & TTL & Low: 0<0.8 Vdc @ 1.8A High: \(1>2.4 \mathrm{Vdc}\) @ 40A \\
\hline & \multirow[t]{2}{*}{CMOS} & Low: \(0<1.6 \mathrm{Vdc}\) @ 0.3A \\
\hline & & High: \(1>3.3 \mathrm{Vdc}\) @ 0.3A \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

\section*{B864-001 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window
REG 8 CH OUT


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 128 & 8 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 128 bits output & Mapped as 128 bits output \\
Type & \(0 x\) & \(\% M x\) \\
& \begin{tabular}{l} 
or \\
Mapped as 8 registers output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 8 words output \\
\(\% M W x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B865-001 Register Input}

\section*{53}

\section*{At a Glance}

What's in this Chapter?

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B865-001 Register Input Module.}

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B865-001 Register Input, Overview & 516 \\
\hline B865-001 Register Input, Switch Settings & 518 \\
\hline B865-001 Register Output, Field Connections & 519 \\
\hline B865-001Register Input, Specifications & 522 \\
\hline B865-001 Parameter Configuration & 524 \\
\hline
\end{tabular}

\section*{B865-001 Register Input, Overview}

The B865-001 register input module provides a 5 V TTL or CMOScompatible interface between peripheral field devices and a PLC.The B865001 is an eightchannel register module with eight 16-bit registers. A channel is defined as a 16 -bit data path.

The module can operate in either BCD or binary mode. The desired mode is userselectable, with the parallel 16-bit input having BCD values in the range 0000-9999 and the binary input in the range0000-FFFF.
The B865-001 operates in module-select mode, which updates the controller with eight input registers of new data samples on one scan period. The module-select feature ensures data integrity by sampling and comparing data from the user device twice during each channel's active strobe period. If the samples are equal, the data is accepted for further processing. If the samples are not equal, the old data is sent to the controller. If a channel has three consecutive no-compares, a 16-bitword containing all zeros is routed to the PLC.

The following diagram shows the schematic diagram for the B865-001 Register Input Module.


The B865-001 operates with a 16-bit data path. Data is routed from a device by means of a strobe line associated with each device. The datalines are common to all devices while the strobe performs the addressing function.
The DC (data changing) signal from the field device is used for slowly changing data such as thumb wheel switches, and prevents erroneous information from being transferred to the PLC. This input needs only be used for slowly changing data that may cause the capture of erroneous information. The DC input connection is made on terminal 18 of the module's field side wiring strip.

\section*{B865-001 Register Input, Switch Settings}

\section*{Switch Settings}

Two toggle switches are located at the top of the module and are used to determine the type of communication with external devices. Both switches are user selectable.
1. Data Polarity Switch

This toggle switch allows selection of true-hi or true-lo input data.
2. Bin/BCD Switch

This toggle switch determines whether the input data is to be interpreted by the controller as a BCD or a binary value.

Note: The switch and I/O map relationship is summarized in the following table.

\section*{Table}

The following table identifies the relationship between the switch and I/O map facility.
\begin{tabular}{|l|l|l|}
\hline I/O Map Selection & B865 Switch Setting & Result \\
\hline Binary & BCD & BCD \\
\hline Binary & Binary & Binary \\
\hline BCD & BCD & Erroneous \\
\hline BCD & Binary & BCD \\
\hline
\end{tabular}

\section*{B865-001 Register Output, Field Connections}

Terminal Numbering and Input Functions

User connections are made to a standard screw terminal strip The rigid wiring system permits module insertion or removal without disturbing the wiring. Terminal numbering and input functions are shown on the following illustration.


Pull-up Resistor Connection

Resistive pull-ups of \(2.2 \mathrm{k} \Omega 10 \%\) for each strobe line must be provided.This is required on ACTIVE devices only. Thumb wheel switches, for example, do not require the addition of pull-up resistors.
The recommended location for the pull-up resistors is at the device end of the circuit. However, they will work at the module end as well. The following illustration shows a typical circuit setup.


Strobe Type Strobe lines for the B865 module are true-low. The opposite is the case in other Modicon I/O modules. Therefore, when multiple thumb wheel inputs require diode isolation, the polarity of the diodes may have to be reversed.

\section*{B865-001Register Input, Specifications}

Module B865-001, Specification Table
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & TTL register input \\
\hline \multicolumn{2}{|l|}{Number of Points} & 8 channels, 16 data lines \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 5 V TTL \\
\hline \multicolumn{2}{|l|}{Number of Groups} & NA \\
\hline \multicolumn{2}{|l|}{Outputs/group} & NA \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Guaranteed Min. Levels}} & High State>3.5 Vdc \\
\hline & & Low State<0.4 Vdc while sinking 16 mA \\
\hline \multicolumn{2}{|l|}{Strobe Output Power} & 2 TTL loads @ 5 Vdc \\
\hline \multicolumn{2}{|l|}{Strobe Width Timing} & \(2 \mathrm{mS} \mathrm{10} \mathrm{\%}\) \\
\hline \multicolumn{2}{|l|}{Data Set-up Time} & Within 180 s after the strobe has gone active (LO), data must have sta-bilized on the field side inputs \\
\hline \multicolumn{2}{|l|}{Minimum Data Hold Time} & 100 s must be provided by user \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Maximum \\
Response \\
Time
\end{tabular}} & OFF \(\rightarrow\) ON & 20 ms \\
\hline & ON \(\rightarrow\) OFF & 20 ms \\
\hline \multirow[t]{3}{*}{Power Required} & \(+5 \mathrm{~V}\) & 400 mA \\
\hline & +4.3 V & 600 mA \\
\hline & -5 V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Supply} & A +5 Vdc external power supply is required for pull-up resistor VCC \\
\hline \multirow[t]{5}{*}{Field Devices Requirements} & Field Device & Output Level \\
\hline & \multirow[t]{2}{*}{TTL} & Low: \(0<0.8 \mathrm{Vdc}\) @ 1.6A \\
\hline & & High: \(1>2.4 \mathrm{Vdc} @ 40 \mathrm{~A}\) \\
\hline & CMOS & Low: \(0<1.6 \mathrm{Vdc} @ 0.3 \mathrm{~A}\) \\
\hline & & High: \(1>3.3 \mathrm{Vdc}\) @ 0.3 A \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

Note: All user field devices must have outputs that feature latched, tri-state, or open collector, or wired or passive logic. The user must provide \(2.2 \mathrm{k} \Omega 10 \%\) pullup resistors for each strobe line.

\section*{B865-001 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%IW-3X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 128 & 8 & \\
\hline Input Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type & \begin{tabular}{l}
Mapped as 128 bits input 1x \\
or \\
Mapped as 8 registers input 3x
\end{tabular} & \begin{tabular}{l}
Mapped as 128 bits input \% \(1 x\) \\
or \\
Mapped as 8 words input \%IWx
\end{tabular} \\
\hline Input Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B868-001 Register Output}

\section*{54}

\section*{At a Glance}

What's in this Chapter?

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B868-001 Register Output Module.}

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B868-001 Register Output, Overview & 526 \\
\hline B868-001 Register Output, Switch Settings & 527 \\
\hline B868-001 Register Output, Field Connections & 528 \\
\hline B868-001 Register Output, Specifications & 531 \\
\hline B868-001 Parameter Configuration & 532 \\
\hline
\end{tabular}

\section*{B868-001 Register Output, Overview}

\section*{Overview}

The B868-001 register output module provides a 5 V TTL or CMOS-compatible interface between a PLC and peripheral field devices. The B868-001 register output module operates in either BCD or binary mode.
The desired mode is operator selectable, with the 16-bit output either having BCD values in the range 0000 to 9999 or binary output in the range 0000 (HEX) to FFFF (HEX).
The B868-001 is a 8-channel register output module with four 16 -bit registers and is operated in channel select mode. In the channel select mode, only one channel (16bit register width) is transferred during each cycle. This is accomplished by employing a simple form of handshaking with the PC. A channel select word is sent by the PC to the B868 module, directing it to send a specific channel to the addressed field device. The B868 then echos back to the controller the channel address of the last valid transmission. Channel select requires 1 input and 2 consecutive output registers. The input register contains the channel number echo, while the output registers contain the channel address and the data. The following is a simplified block diagram of the unit.


\section*{B868-001 Register Output, Switch Settings}

Switch Settings
Two toggle switches are located at the top left of the module and are used to determine the type of communication with external devices. Both switches are user selectable.
1. Bin/BCD Switch

This toggle switch determines whether the output data is to be interpreted by the target devices as a BCD or a binary value.
2. Strobes Active Hi/Lo Switch

This toggle switch allows selection of either true-hi or true-lo for strobing output data.

Note: The relation between the I/O map selection, the BCD/binary switch setting, and the results at the output are summarized in the following table:

Table
The following table identifies the relationship between the switch and I/O Map facility.
\begin{tabular}{|l|l|l|}
\hline I/O Map Selection & B868 Switch Setting & Result \\
\hline Binary & BCD & BCD \\
\hline Binary & Binary & Binary \\
\hline BCD & BCD & Erroneous \\
\hline BCD & Binary & BCD \\
\hline
\end{tabular}

\section*{B868-001 Register Output, Field Connections}

\section*{Terminal Numbering and Output Functions}

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows how to field connect the unit.
\begin{tabular}{|c|c|c|c|}
\hline NOT USED & (1) & NOT USED & (21) \\
\hline NOT USED & (2) & NOT USED & (2) \\
\hline NOT USED & (3) & NOT USED & (23) \\
\hline DATA 1 & (4) & DATA 15 & (24) \\
\hline DATA 2 & (5) & DATA 16 & (25) \\
\hline DATA 3 & (6) & LOGIC GND & (26) \\
\hline DATA 4 & (7) & StROBE 1 & (27) \\
\hline DATA 5 & (8) & StRobe 2 & (28) \\
\hline DATA 6 & (9) & StRobe 3 & (2) \\
\hline DATA 7 & (10) & StRobe 4 & (3) \\
\hline DATA 8 & (1) & StRobe 5 & (3) \\
\hline DATA 9 & (12) & StRobe 6 & (32) \\
\hline DATA 10 & (13) & StRobe 7 & (33) \\
\hline DATA 11 & (14) & StROBE 8 & (34) \\
\hline DATA 12 & (15) & LOGIC GND & (35) \\
\hline DATA 13 & (16) & GND & (36) \\
\hline DATA 14 & (17) & NOT USED & (37) \\
\hline NOT USED & (18) & NOT USED & (38) \\
\hline NOT USED & (19) & NOT USED & (39) \\
\hline NOT USED & (2) & NOT USED & (40) \\
\hline
\end{tabular}

\section*{Pull-up Resistor} Connection

Pull-up resistors must be installed at the active device end to use the B868 output module. The value of the pull-up resistor depends upon the number of devices that are attached to the data bus, as explained below. Each output meets 0.4 V maximum at 16 mA for a logic low and 3.3 V minimum at 16 mA for a logic high. If the current limit has been exceeded, the pull-up resistor values should be adjusted within specification; otherwise, spurious results may be obtained.
The following illustration indicates how the resistors are connected at the device end. For a single device consisting of 16 data lines, 161 k resistors are required, or, one 1 k resistor per data line. As additional devices are added to the data bus, the value of the pull-up resistor must be increased by 1 k . In other words, if two devices are used, the pull-up resistor must be 2 k , three devices require a 3 k pull-up, and so on, with the maximum number of 8 devices requiring 8 k of pull-up for each data line.

Pull-up Resistor Connection


Note: Increase pull-up resistor value by 1 k for each additional device.

\section*{B868-001 Register Output, Specifications}

\author{
Specification Table
}

The following table provides the specifications for the unit.
\begin{tabular}{l}
\(|l| l \mid\) \\
\hline \multicolumn{2}{|l|}{ B868-001 Specifications } & TTL register output \\
\hline Description \\
\hline Number of Points \\
\hline Operating Voltage \\
\hline Number of Groups \\
\hline Outputs/group \\
\hline Guaranteed Min. Levels \\
\hline Strobe \(\mathrm{N} / \mathrm{A}\) \\
\hline Sutput Power \\
\hline Strobe Width Timing \\
\hline Response Time \\
\\
\hline
\end{tabular}

Note: All user field devices must have outputs that feature latched, tristate, or open collector logic.

Note: The user must provide \(1.0 \mathrm{k} \Omega \pm 10 \%\) pull-up resistors for each strobe line.

\section*{B868-001 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window

\section*{REG MUX OUT}


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%I-1X\%M-0X) & \begin{tabular}{l} 
WORD (\%IW- \\
\(3 X \% M W-4 X)\)
\end{tabular} & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l}
Reference \\
Type \\
Inputs
\end{tabular} & \begin{tabular}{l}
Mapped as 16 bits input \\
1x \\
or \\
Mapped as 1 register input \(3 x\)
\end{tabular} & \begin{tabular}{l}
Mapped as 16 bits input \% x \\
or \\
Mapped as 1 word input \%IWx
\end{tabular} \\
\hline \begin{tabular}{l}
Reference \\
Type Outputs
\end{tabular} & \begin{tabular}{l}
Mapped as 32 bits output \\
0x \\
or \\
Mapped as 2 registers output \\
4 x
\end{tabular} & \begin{tabular}{l}
Mapped as 32 bits output \%Mx \\
or \\
Mapped as 2 words output \\
\%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B869-002 Register Input}

\section*{55}

\section*{At a Glance}
\begin{tabular}{l|l|c|}
\hline Purpose & \multicolumn{1}{l}{\begin{tabular}{l} 
This chapter describes the functional and physical characteristics of the B869-002 \\
Register Input Module.
\end{tabular}} \\
\cline { 2 - 3 } \begin{tabular}{l} 
What's in this \\
Chapter?
\end{tabular} & This chapter contains the following topics: & Page \\
\hline Topic & 536 \\
\hline B869-002 Register Input, Overview & 538 \\
\hline B869-002 Register Input, Switch Settings & 539 \\
\hline B869-002 Register Output, Field Connections & 541 \\
\hline B869-002 Register Output, Specifications & 542 \\
\hline B869-002 Parameter Configuration &
\end{tabular}

\section*{B869-002 Register Input, Overview}

\begin{abstract}
Overview The B869-002 register input module provides a 5 V TTL or CMOS-compatible interface between peripheral field devices and a PLC. The B869-002 is capable of inputting numeric 4 -digit BCD data, or 16-bit binary data from field devices to the controller.
The module can operate in either BCD or binary mode. The desired mode is userselectable, with the parallel 16 -bit input having BCD values in the range 0000 to 9999 and the binary input in the range 0000 (HEX) to FFFF (HEX).
The B869-002 is an 8 channel device that operates in a channel select mode. In the channel select mode, only one channel (16-bit register width) is transferred during each cycle. This is accomplished by employing a simple form of handshaking with the PC. A channel select word is sent by the PC to the module, requesting data from a specific channel. The module then responds by sending the requested data, together with a channel select echo. Channel select mode requires 1 output and 2 consecutive input registers. The output register (Channel Select Reg) contains the address of the selected channel, while the 2 input registers contain the channel number echo and the data, respectively.
\end{abstract}

\section*{Schematic Diagram}

The following figure shows the schematic diagram for the B869-002 Register Input Module.


The B869-002 operates with a 16-bit data path. Data is routed in from a device by means of a strobe line associated with each device. The data lines are common to all devices while the strobe performs the addressing function. The channel select function permits the PC to transfer a single channel of 16 bits from a selected field device to the PC during one OURBUS cycle.
The DC (data changing) signal from the field device is used for slowly changing data such as thumb wheel switches and prevents erroneous information from being transferred to the PLC.
To avoid loading the bus when a device is not being addressed, any active device interfaced to the input module must have latched, tri-state, or open collector outputs.

\section*{B869-002 Register Input, Switch Settings}

\section*{Switch Settings}

Two toggle switches are located at the top of the module and are used to determine the type of communication with external devices. Both switches are user selectable.
1. Data Polarity Switch

This toggle switch allows selection of true-hi or true-lo input data.
2. Bin/BCD Switch

This toggle switch determines whether the input data is to be interpreted by the controller as a BCD or a binary value.

Note: The switch and I/O map relationship is summarized in the following table.

\section*{Table}

The following table identifies the relationship between the switch and I/O map facility.
\begin{tabular}{|l|l|l|}
\hline I/O Map Selection & B869 Switch Setting & Result \\
\hline Binary & BCD & BCD \\
\hline Binary & Binary & Binary \\
\hline BCD & BCD & Erroneous \\
\hline BCD & Binary & BCD \\
\hline
\end{tabular}

\section*{B869-002 Register Output, Field Connections}

Terminal
Numbering and Input Functions

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.
Terminal numbering and input functions are shown on the following illustration.


\section*{Pull-up Resistor Connection}

\section*{B869-002 Register Output, Specifications}

\section*{Specification Table}

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B869-002 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & TTL register output \\
\hline \multicolumn{2}{|l|}{Number of Points} & 8 channels, 16 data lines \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 5 V TTL \\
\hline \multicolumn{2}{|l|}{Number of Groups} & N/A \\
\hline \multicolumn{2}{|l|}{Outputs/group} & N/A \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Guaranteed Min. Levels}} & High State > 3.5 VDC \\
\hline & & Low State < 0.4 VDC while sinking 16 mA \\
\hline \multicolumn{2}{|l|}{Strobe Output Power} & Two TTL loads @ 5 VDC \\
\hline \multicolumn{2}{|l|}{Strobe Width Timing} & \(2 \mathrm{~ms} \pm 10 \%\) \\
\hline \multicolumn{2}{|l|}{Data Set-up Time} & Within \(180 \mu \mathrm{~s}\) after the strobe has gone active (LO), data must have stabilized on the field side inputs \\
\hline \multicolumn{2}{|l|}{Minimum Data Hold Time} & \(100 \mu \mathrm{~s}\) must be provided by the user \\
\hline \multicolumn{2}{|l|}{Response Time} & 20 ms between a field data change and an I/O Comm (OURBUS) update \\
\hline \multirow[t]{2}{*}{Power Required} & +5 VDC I/O & 400 mA max. \\
\hline & +4.3 VDC I/O & 600 mA max. \\
\hline \multicolumn{2}{|l|}{External Power Supply} & +5 VDC may be required for pull-up Vcc \\
\hline \multirow[t]{3}{*}{Field Device Requirements} & TTL output level & \[
\begin{aligned}
& \text { Low: < 0.8 VDC @ } 1.6 \mathrm{~mA} \\
& \text { High: > 2.4 VDC @ } 40 \mu \mathrm{~A}
\end{aligned}
\] \\
\hline & CMOS output level & Low: < 1.6 VDC @ \(0.3 \mu \mathrm{~A}\) \\
\hline & & High: > 3.3 VDC @ \(0.3 \mu \mathrm{~A}\) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

Note: All user field devices must have outputs that feature latched, tristate, open collector or wired or passive logic.

Note: The user must provide \(2.2 \mathrm{k} \Omega \pm 10 \%\) pull-up resistors for each strobe line.

\section*{B869-002 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
BIT (\%I- \\
1 Y\%M-0X)
\end{tabular} & \begin{tabular}{l} 
WORD (\%IW- \\
3X\%MW-4X)
\end{tabular} & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l} 
Reference Type \\
Inputs
\end{tabular} & \begin{tabular}{l} 
Mapped as 32 bits input \\
1 x \\
or \\
Mapped as 2 registers input \\
3x
\end{tabular} & \begin{tabular}{l} 
Mapped as 32 bits input \\
\%lx \\
or \\
Mapped as 2 words input \\
\%IWx
\end{tabular} \\
\hline \begin{tabular}{l} 
Reference Type \\
Outputs
\end{tabular} & \begin{tabular}{l} 
Mapped as 16 bits output \\
0x \\
or \\
Mapped as 1 register output \\
4 x
\end{tabular} & \begin{tabular}{l} 
Mapped as 16 bits output \\
\%Mx \\
or \\
Mapped as 1 word output \\
\%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B881-001 Latched 24 Vdc Input}

\section*{56}

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B881-001 Latched 24 Vdc Input Module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B881-001 Latched 24 Vdc Input, Overview & 546 \\
\hline B881-001 Latched 24 Vdc Input, Field Connections & 549 \\
\hline B881-001 Latched 24 Vdc Input, Specifications & 550 \\
\hline B881-001 Parameter Configuration & 551 \\
\hline
\end{tabular}

\section*{B881-001 Latched 24 Vdc Input, Overview}

The B881-001 Latched 24 Vdc Input Module senses and converts input signals from its field circuitry to a logic level used by Modicon PLC. The incoming signal causes the module to latch at the occurrence of the ON state and may be considered a latching event. The 24 Vdc , true high latched input module is capable of direct connection to any Modicon, true high dc output module (at proper voltage). The following illustration shows the B881-001 Latched 24 Vdc Input Module Simplified Block Diagram


The latching mechanism exists solely to lockout subsequent incoming signals for the time it takes to communicate to the controller that a latching event occurred, receive an acknowledgement, and reset the latch. The latched input module does not affect the users field circuit, drive the controller or communicate information to it other than the fact that a latching event took place.
Signals on the 16 -channel inputs are compared to a reference voltage nominally set to \(75 \%\) of the group supply voltage. An input signal of 500 s minimum pulse width and equal to or exceeding the reference voltage threshold will cause a latched ON state for any given channel.An input signal voltage less than \(25 \%\) of the group supply voltage will result in a system OFF state
When the module senses and latches on the leading edge of the true-high, incoming field signal or data bit (DB), it clocks the D-type flip-flop on the low-to-high transition, in effect, capturing the latching event.

The module's ON state is communicated to the controller through Shift Register (A) and OBS chip via a handshake mechanism. The logic is then returned to the module from the CPU as an inverted signal through shift register (B) where it resets the flipflop (latch condition) for that channel only. The reset latch is then available for another, low-to-high, event transition. To ensure that the controller has received a latched event, the module actually operates in a user programmed, echoed- data handshake mode. The handshake mechanism requires four to six scans before a new event can be recognized. Total scan time is software-limited to 200 ms maximum and hardware limited to 250 ms maximum. Thus, you should not attempt to record events with a repetition rate greater than one per second unless willing to analyze this actual system and program.

Note: Reversal of external load polarity will not cause circuit failure as the module is fused to protect its circuitry against overload currents and accidental polarity reversal.

\section*{B881-001 Latched 24 Vdc Input, Field Connections}

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows the field connections for the unit.


\section*{B881-001 Latched 24 Vdc Input, Specifications}

Module B881-001, Specification Table
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & 24 Vdc (LATCH) input \\
\hline \multicolumn{2}{|l|}{Type of Operation} & True High \\
\hline \multicolumn{2}{|l|}{Number of Points} & 16 \\
\hline \multicolumn{2}{|l|}{Operating Range Voltage} & 20-28 Vdc \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 1 \\
\hline \multicolumn{2}{|l|}{Inputs/group} & 16 \\
\hline \multicolumn{2}{|l|}{OFF \(\rightarrow\) ON} & \(\leq 25 \%\) of group supply voltage and input reset bit sent back to module \\
\hline \multicolumn{2}{|l|}{ON \(\rightarrow\) OFF} & \$25\% of group supply voltage \\
\hline \multicolumn{2}{|l|}{ON Condition} & \(\geq 75 \%\) of group supply voltage for \(.5 \mathrm{~ms} / \mathrm{min}\) event pulse width \\
\hline \multirow[t]{3}{*}{Maximum Input Voltage} & Continuous & 30 Vdc \\
\hline & Inrush & 40 Vdc for 10 ms \\
\hline & ON current & 6 mA @ 24 Vdc (typical) \\
\hline \multicolumn{2}{|l|}{Minimum Pulse Width} & 0.5 ms \\
\hline \multicolumn{2}{|l|}{Repetition Rate} & 1/s \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 30 mA \\
\hline & +4.3V & 1.1 mA \\
\hline & -5 V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & \(24 \mathrm{Vdc}(4 \mathrm{Vdc})\), 310 mA \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8534-000 \\
\hline \multicolumn{2}{|l|}{Fuse} & 1/group, 75 A @ 250 Vdc \\
\hline
\end{tabular}

\section*{B881-001 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{BIDIR 1 REG} \\
\hline \(\sqrt{\text { 南 Config }}\) & \\
\hline Parameter Name & Value \\
\hline r--MAPPING & BIT (\%I-1X\%M-0X) \\
\hline ---INPUTS STARTING ADDRESS & 1 \\
\hline r-- INPUTS ENDING ADDRESS & 16 \\
\hline +- OUTPUTS STARTING ADDRESS & 1 \\
\hline -- OUTPUTS ENDING ADDRESS & 16 \\
\hline \(\cdots\)--OUTPUT TYPE & BINARY \\
\hline
\end{tabular}

四 \(1: 140 \times B P\). \(3:\) B881

Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
BIT (\%I- \\
1X\%M-0X)
\end{tabular} & WORD (\%IW-3X\%MW-4X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 16 bits input & \begin{tabular}{l} 
Mapped as 16 bits input \\
Type Inputs \\
1 x
\end{tabular} \\
& \begin{tabular}{l} 
or \\
Mapped as 1 register input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 1 word input \\
\%IWx
\end{tabular} \\
\hline \begin{tabular}{l} 
Reference \\
Type Outputs
\end{tabular} & \begin{tabular}{l} 
Mapped as 16 bits output \\
\(0 x\) \\
or \\
Mapped as 1 register output \\
\(4 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 16 bits output \\
\%Mx \\
or
\end{tabular} \\
\hline Output Type & BIN/BCD & \begin{tabular}{l} 
Mapped as 1 word output \\
\%MWx
\end{tabular} \\
\hline
\end{tabular}

\section*{B881-508 125 Vdc Output}

\section*{57}

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B881-508}

What's in this Chapter? 125 Vdc Output Module.

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B881-508 125 Vdc Output, Overview & 554 \\
\hline B881-508 125 Vdc Output, Fault Conditions & 555 \\
\hline \(881-508125\) Vdc Output, Field Connections & 556 \\
\hline B881-508 125 Vdc Output, Specifications & 557 \\
\hline B881-508 Parameter Configuration & 558 \\
\hline
\end{tabular}

\section*{B881-508 125 Vdc Output, Overview}

The B881-508 125 Vdc Output Module has eight isolated outputs. The outputs can serve 125 Vdc voltage relays, pilot lamps, motor starters, solenoids, valves, and any other load rated up to 140 Vdc (the outputs work in the range 5-140 Vdc). Also, the B881 allows current surges within certain time limits. Internal fault flags report currents greater than 30 A , and currents between 5-30 A for a period greater than 500 ms . This shut down mode can only be cleared by resetting the point. Point control within ms provides fast response in critical situations. The B881-508 conforms to ANSI/IEEEC37.90 1978 duty cycle sequences.
In addition to the normal mode of controlling the outputs, the B881-508 allows the first four points to be independently controlled by external inputs through the field side connector. These external inputs are 24 Vdc active high. When a fault occurs during control by the external inputs, that input must be cycled (turned off) to clear the fault flag.
The following illustration is the B881-508 simplified schematic diagram


\section*{B881-508 125 Vdc Output, Fault Conditions}

\section*{Overview}

Over-current shutdown, as well as current surges greater than 500 ms are detected by the B881-508. Each point has a fault bit that can be accessed using the programming panel software. Each bit indicates either an over-current (greater than 30 A ), or a current surge between \(5-3 \mathrm{~A}\) for a period greater than 500 ms . Although the B881-508 is I/O mapped as a 16-point bi-directional module, only the lower order eight inputs and outputs are used; the higher order eight inputs and outputs can not be used. Refer to the illustration below.
The following illustration shows the B881-508 fault flags


\section*{881-508 125 Vdc Output, Field Connections}

Overview
User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.
The following illustration shows the B881-508 terminal numbering


Note: Reverse voltage protection
This module does not provide reverse voltage protection. Check for proper voltage polarity of the output wiring.

\section*{B881-508 125 Vdc Output, Specifications}

B881-508, Specifications
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & 125 Vdc true high output \\
\hline \multicolumn{2}{|l|}{Number of Points} & 8 \\
\hline \multicolumn{2}{|l|}{Operating Voltage} & 5-140 Vdc maximum \\
\hline \multicolumn{2}{|l|}{Number of Groups} & 8 \\
\hline \multicolumn{2}{|l|}{Outputs/group} & 1 \\
\hline \multicolumn{2}{|l|}{Maximum Load Current} & 5.0 A continuous/channel maximum @ \(25^{\circ} \mathrm{C}\) derated by \(0.03 \mathrm{~A} /{ }^{\circ} \mathrm{C}-4.0\) A continuous per channel maximum @ \(60^{\circ} \mathrm{C} 29.0 \mathrm{~A} /\) module maximum \\
\hline \multicolumn{2}{|l|}{Pulsed ON Cycle} & \(500 \mathrm{~ms} \mathrm{maximum} \mathrm{for} \mathrm{5-30} \mathrm{~A} \mathrm{load}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Inductance and Maximum Current/Channel}} & \(\mathrm{I}^{2} \mathrm{~L}<25 \mathrm{~W}\) * \\
\hline & & \(\mathrm{I}^{2} \mathrm{LF}<0.5 \mathrm{~W}\) ** \\
\hline \multicolumn{2}{|l|}{Wattage} & <24 W, 2.5 W/point maximum \\
\hline \multicolumn{2}{|l|}{Minimum Load Current} & 75 mA \\
\hline \multicolumn{2}{|l|}{Surge Current} & 30.0 A 1 cycle ( 500 ms )/channel maximum \\
\hline \multicolumn{2}{|l|}{Minimum Load Current} & 75 mA \\
\hline \multirow[t]{2}{*}{Maximum Response Time} & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & \(<75\) S \\
\hline & ON \(\rightarrow\) OFF & \(<100\) S \\
\hline \multicolumn{2}{|l|}{Maximum OFF State Leakage Current} & <3 mA \\
\hline \multicolumn{2}{|l|}{ON State Voltage Drop Across Module} & <0.75 Vdc @ 4 A Load Current \\
\hline \multirow[t]{4}{*}{External Inputs} & Response Time & 75 S \\
\hline & Working Voltage Range & 19.2-28 Vdc \\
\hline & Maximum Input Range & 30 Vdc \\
\hline & Mode of Operation & True High \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 300 mA \\
\hline & +4.3 V & 0 mA \\
\hline & -5 V & 0 mA \\
\hline \multicolumn{2}{|l|}{External Power Supply} & 5-140 Vdc field power supply \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535--000 \\
\hline \multicolumn{3}{|l|}{*Typical values of relay inductance and currents that can be switched safely at 1 s rates using this formula.} \\
\hline \multicolumn{3}{|l|}{**For repetitive pulses, use this formula.} \\
\hline
\end{tabular}

Note: Proper fusing of external circuitry is required, depending on the application.

\section*{B881-508 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{BIDIR 1 REG} \\
\hline [ & \\
\hline Parameter Name & Value \\
\hline \(\cdots \mathrm{MAPPING}\) & BIT (\%I-1X\%M-0X) \(\quad\) - \\
\hline -- INPUTS STARTING ADDRESS & 1 \\
\hline r--INPUTS ENDING ADDRESS & 16 \\
\hline \({ }^{+--}\)OUTPUTS STARTING ADDRESS & 1 \\
\hline - OUTPUTS ENDING ADDRESS & 16 \\
\hline - OUTPUT TYPE & BINARY \\
\hline 咀1:140 XBP 3 : B881 & \\
\hline
\end{tabular}

Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
BIT (\%I- \\
1 X\%M-0X)
\end{tabular} & \begin{tabular}{l} 
WORD (\%IW- \\
3 X\%MW-4X)
\end{tabular} & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 16 & 1 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

\section*{Mapping Parameter References}
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type Input & \begin{tabular}{l}
Mapped as 16 bits input 1x \\
or \\
Mapped as 1 register input 3x
\end{tabular} & \begin{tabular}{l}
Mapped as 16 bits input \% \(1 x\) \\
or \\
Mapped as 1 word input \%IWx
\end{tabular} \\
\hline Reference Type Outputs & \begin{tabular}{l}
Mapped as 16 bits output \(0 x\) \\
or \\
Mapped as 1 register output \(4 x\)
\end{tabular} & \begin{tabular}{l}
Mapped as 16 bits output \%Mx \\
or \\
Mapped as 1 word output \%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\title{
B882-032 24 Vdc Diagnostic Output and B818 20-28 Vac Discrete Output
}

\section*{At a Glance}

Purpose This chapter describes the functional and physical characteristics of the B882-032 24 Vdc Diagnostic Output Module and the B818 20-28 Vac Discrete Output Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B882-032 24 Vdc Diagnostic Output, Overview & 560 \\
\hline B882-032 24 Vdc Diagnostic Output, Fault Conditions & 561 \\
\hline B882-032 24 Vdc Diagnostic Output, Field Connections & 563 \\
\hline B818, 20-28 Vac Output, Keying and Wiring & 564 \\
\hline B882-032 24 Vdc Diagnostic Output, Dip Switch Settings & 566 \\
\hline B882-032 24 Vdc Diagnostic Output, Specifications & 567 \\
\hline B818, 20-28 Vac Output, Specifications & 568 \\
\hline B882-032 Parameter Configuration & 569 \\
\hline B818 Parameter Configuration & 570 \\
\hline
\end{tabular}

\section*{B882-032 24 Vdc Diagnostic Output, Overview}

The B882-032 diagnostic output module provides 32 points that make up four groups of eight outputs. Each group of eight outputs shares an external power supply voltage. The outputs work over the range of 20.0 - 28.0 Vdc , true high. It is capable of driving 24 Vdc relays, solenoids, pilot lamps, and other loads rated up to 1.0 A.

The B882-032 module also detects field fault conditions and turns the faulted point OFF for vital applications. The B882-032 diagnostic dc output module can detect open-load, over-current, over-voltage, and over-temperature conditions.
The following illustration is the B882-032 simplified block diagram


The functionality of the diagnostic dc output module can be selected according to the following criteria. It can be a bi-directional module (B882) with 32 discrete outputs and 32 discrete inputs which represent fault flags for each respective output. It can also be a uni-directional module (B818) having 32 discrete outputs without fault flags.

\section*{B882-032 24 Vdc Diagnostic Output, Fault Conditions}

\begin{abstract}
B882 Mode
Open-load, over-current, over-voltage and over-temperature fault conditions are detected by the diagnostic output module.
When an output fault is detected In the B882 mode, the module without controller intervention disarms the faulted output and reports the condition to the controller via discrete input (1x), or input register (3x) points. The point remains disarmed until the user's logic rearms the point by turning the point back on. To turn the point back on the user's logic must turn the point first off and then on.
\end{abstract}

Note: If the controller attempts to turn a faulted point back on, there must be a 2 5 s delay from the time of a fault to the time of cycling the faulted point on. When this delay is not given, the module ignores the change. When the fault point is brought low, the fault indicator clears in the 2-5 s range.

Note: If field power is lost, the module may detect faults. After field power is reapplied, all faults must be cleared

Note: Clearing faults prior to restarting When a fault is detected in either the B882 or B818 mode, the source of the fault should be cleared prior to restarting the point. Failing to clear the source of a fault may result in damage to the
- power source
- driven field-side device
- module

B818 Mode When an output fault is detected In the B818 mode, the module without controller intervention disarms the faulted output. Faults are not reported to the controller. To turn the point back on, the user's logic must first turn the point off and then on.

Note: If the controller attempts to turn a faulted point back on, there must be a 2 5 s delay from the time of a fault to the time of cycling the faulted point on. When this delay is not given, the module ignores the change. When the faulted point is brought low, the fault indicator clears in the \(2-5\) s range.

Note: Loss of power.
If field power is lost in the B818 mode, the module may detect faults that are not visible to the controller.
- After field power is reapplied, the points must be turned OFF and then ON for all ON states.

\section*{Fault Definitions}
\begin{tabular}{|l|l|}
\hline Term & Definition \\
\hline Open Load & \begin{tabular}{l} 
When the load current is less than, or equal to 100 mA , the output is turned OFF and \\
the fault flag is set. To prevent the fault flag from being set, a resistor should be \\
placed between the output point and the group return. For example, @ 20 Vdc the \\
minimum load is \(200 \Omega\), @ 24 Vdc the minimum load is \(240 \Omega\), and @ 28 Vdc the \\
minimum load is \(280 \Omega\). When the output is already on and the load exceeds the open \\
load trip level for one to one and a half ms, the output is turned OFF, and the fault flag \\
is set.
\end{tabular} \\
\hline \begin{tabular}{l} 
Over \\
Current
\end{tabular} & \begin{tabular}{l} 
When the load current exceeds the over current trip level following the switching of a \\
point from OFF to ON, the output is turned OFF, and the fault flag is set. When the \\
output is already on and the current exceeds the over current trip level for one to one \\
and a half ms, the output is turned OFF, and the fault flag is set.
\end{tabular} \\
\hline
\end{tabular}

Note: The over current trip level has a value of 3.5 A or greater. Over current greater than 12 A may cause point failure
\begin{tabular}{|l|l|}
\hline Term & Definition \\
\hline Over Voltage & \begin{tabular}{l} 
If the external voltage supply exceeds the module's rating, the output point \\
turns OFF, and a fault flag may be returned. The point requires cycling after \\
the external supply returns to a safe operating level. The over-voltage trip level \\
has a value greater than 31 Vdc. There is no time delay.
\end{tabular} \\
\hline \begin{tabular}{l} 
Over \\
Temperature
\end{tabular} & \begin{tabular}{l} 
When the junction temperature of the output transistor reaches \(140^{\circ} \mathrm{C}\) or \\
greater, the output is turned OFF, and the fault flag is set.
\end{tabular} \\
\hline
\end{tabular}

Note: the following about unused outputs in a B882
- Unused outputs should not be turned ON since their field points are not wired.
- Turning them ON will cause an open load fault and the active light will blink.
- The minimum load required is 100 mA .

\section*{B882-032 24 Vdc Diagnostic Output, Field Connections}

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. Setting the DIP switch allows selection of bi-directional fault reporting or uni-directional nonfault reporting functionality prior to installation.
The following illustration shows the B882-032 terminal numbering and output connections


\section*{B818, 20-28 Vac Output, Keying and Wiring}

Overview User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

\section*{Terminal \\ Numbering and \\ Output \\ Connections}

The following figure shows terminal numbering and output connections for the the B818 module.


Mechanical The following figure shows the keying for the the B818 module.
Keying


\section*{B882-032 24 Vdc Diagnostic Output, Dip Switch Settings}

The four-position dip switch is located on the rear of the module. This switch controls the functionality of the module (bi-directional or uni-directional).
Set switch SW3 for either (B882) bi-directional fault reporting, or (B818) unidirectional non-fault reporting. Refer to the following illustration for switch settings. Also refer to the label located on the left side of the module itself. The following illustration shows the B882-032 dip switch settings

4-POSITION DIP-SWITCH
TOP OF MODULE


0
1
ON OFF
DOWN UP
LEFT RIGHT

\section*{SWITCHES FUNCTIONS}

1 and 2 NOT USED, KEEP TO LEFT
3
MODULE FUNCTIONALITY
FOR BI-DIRECTIONAL SW3 = R (B882)

FOR UNI-DIRECTIONAL
SW3 = L (B818)
4
NOT USED, KEEP TO LEFT

Note: Selecting the bi-directional module functionality(B882) allows 32 discrete outputs and 32 returned fault flags. Selecting the uni-directional module functionality (B818) allows 32 discrete outputs.

\section*{B882-032 24 Vdc Diagnostic Output, Specifications}

B882-032 specifications
\begin{tabular}{|l|l|}
\hline Description & 24 Vdc diagnostic output \\
\hline Type of Operation & True high \\
\hline Number of Points & 32 \\
\hline Operating Voltage & \(19.2-28 \mathrm{Vdc}\) \\
\hline Number of Groups & 4 \\
\hline \multicolumn{2}{|l|}{ Outputs/group } \\
\hline \multicolumn{2}{|l|}{ ON State Voltage Drop } \\
\hline OFF State Leakage & 8 \\
\hline Minimum Load & 0.5 Vdc maximum @ 1 A \\
\hline \begin{tabular}{l} 
Maximum Continuous \\
Current
\end{tabular} & per output \\
\hline & \\
\hline
\end{tabular}

\section*{B818, 20-28 Vac Output, Specifications}

Specification

\section*{Table}

The following table provides the specifications for the unit.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ B818 Specifications } & 32 point discrete output module \\
\hline Description & 32 \\
\hline Number of Points & \(20-28\) VAC cont. \\
\hline Operating Voltage & 4 \\
\hline Number of Groups & 8 \\
\hline Outputs/group & Maximum/point & 1 A \\
\hline \multirow{4}{*}{ ON Current } & Maximum/group & 6 A \\
\cline { 2 - 4 } & Maximum/module & 24 A \\
\hline Power required & +5 V & 300 mA \\
\cline { 2 - 4 } & +4.3 V & 10 mA \\
\cline { 2 - 4 } & -5 V & 0 mA \\
\hline
\end{tabular}

\section*{B882-032 Parameter Configuration}

\section*{Parameter and} Default Values

Parameter Configuration Window
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{BIDIR 2 REG} \\
\hline \multicolumn{2}{|l|}{\(\sqrt{\text { Win }}\) Config} \\
\hline Parameter Name & Value \\
\hline \(r-\mathrm{MAPPING}\) & BIT (\%I-1X\%M-0X) \\
\hline -- INPUTS STARTING ADDRESS & 1 \\
\hline r-- INPUTS ENDING ADDRESS & 32 \\
\hline r-- OUTPUTS STARTING ADDRESS & 1 \\
\hline - - OUTPUTS ENDING ADDRESS & 32 \\
\hline r-OUTPUT TYPE & BINARY \\
\hline
\end{tabular}

而1:140 XBP. \(3:\) B882
Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
BIT (\%I- \\
1X\%M-0X)
\end{tabular} & \begin{tabular}{l} 
WORD (\%IW- \\
3 3\%MW-4X)
\end{tabular} & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type Inputs & \begin{tabular}{l}
Mapped as 32 bits input \\
1x \\
or \\
Mapped as 2 registers input 3x
\end{tabular} & \begin{tabular}{l}
Mapped as 32 bits input \%|x \\
or \\
Mapped as 2 words input \%IWx
\end{tabular} \\
\hline Reference Type Outputs & \begin{tabular}{l}
Mapped as 32 bits output \\
0x \\
or \\
Mapped as 2 registers output \\
4 x
\end{tabular} & \begin{tabular}{l}
Mapped as 32 bits output \%Mx \\
or \\
Mapped as 2 words output \\
\%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B818 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & BIT (\%M-0X) & WORD (\%MW-4X) & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 32 bits output & Mapped as 32 bits output \\
Type & \(0 x\) & \begin{tabular}{l} 
\%xx \\
or \\
Mapped as 2 registers output \\
\(4 x\)
\end{tabular} \\
\hline Output Type & BIN/BCD & \begin{tabular}{l} 
Mapped as 2 words output \\
\(\% M W x\)
\end{tabular} \\
\hline
\end{tabular}

\section*{B882-116 24 Vdc Output}

\section*{59}

\section*{At a Glance}

Purpose This chapter describes the functional and physical characteristics of the B882-116 24 Vdc Output Module.

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B882-116 24 Vdc Output, Overview & 572 \\
\hline B882-116 24 Vdc Output, Field Connections & 573 \\
\hline B882-116 24 Vdc Output, Configuration & 574 \\
\hline B882-116 24 Vdc Output, Switch Settings & 577 \\
\hline B882-116 24 Vdc Output, Specifications & 578 \\
\hline B882-116 Parameter Configuration & 580 \\
\hline
\end{tabular}

\section*{B882-116 24 Vdc Output, Overview}

\section*{Overview The B882-116 24 Vdc (16-point) output module monitors field points for both open} and short circuit fault conditions. The module is designed for safety applications whereby it monitors essential field wiring.
Two test modes are available: pulse test mode, and no pulse test mode. In no pulse test mode, the module detects open circuits only when the output point is OFF, and short circuits only when the point is ON. Leakage current in the OFF state is less than 3 mA . Trip current to detect a short circuit is greater than 1 A . In pulse test mode, the module pulses the output to the opposite of the command state to determine the complete status of the output load. Pulse timing is: 500 s opposite state pulse once every second.

Note: Average currents in output circuits are changed by no more than \(0.1 \%\) by full test mode.

Schematic diagram

The following illustration is the B882-116 simplified schematic diagram


This leakage current is actually the 2.5 mA test current source. It cannot be turned OFF.

\section*{B882-116 24 Vdc Output, Field Connections}

\section*{Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows the B882-116 terminal numbering and output connections}


Note: The dummy load pin is only used to prevent an open circuit fault from being returned from an unused output.

\section*{B882-116 24 Vdc Output, Configuration}

This module appears as a B882 module when configured-i.e., the module requires either four 16-bit words-two \(3 x\) input registers and two \(4 x\) holding registers or 32 discrete \(0 x\) outputs and 32 discrete 1xinputs.
The first holding register contains the command state programmed by the user. The input registers contains the faults detected. If an open circuit fault is detected on output point three, then a one is displayed in the \(3 x\) register at position three. If a short fault is detected on output point three, then a one is displayed in register \(3 x+\) 1 at position three. A one indicates a detected fault, whereas a zero indicates normal operation of that output point.
The module uses only three of the four configured 16-bit words. A point that is shorted disables the output current flow. Once a fault is detected the operation follows the following flow chart if the module is in the pulse test mode of operation. If not in pulse test mode, then reported faults are cleared when a command changes it to the opposite state. In either case the detection of a short will force the point off.

Note: The module will not work correctly with a J810 remote I/O processor.

The B882-116 full fault test mode only flow chart is shown in the illustration below.


The B882-116 module mode behavior table is shown below.
\begin{tabular}{|l|l|l|}
\hline Module Mode Behavior & Partial Test Mode & Full (PULSE) Test Mode \\
\hline Use with high speed field devices & Yes & Not recommended \\
\hline Finds opens when OFF & Yes & Yes \\
\hline Finds opens when ON & No & Yes \\
\hline Reaction to OPEN fault* & No Change & Point OFF \\
\hline \begin{tabular}{l} 
To clear open fault, close \\
physical fault, then
\end{tabular} & See Note 1 & Write 0 \\
\hline Finds shorts when OFF & No & Yes \\
\hline Finds shorts when ON & Yes & Yes \\
\hline Reaction to short fault* & Point OFF & Soint OFF \\
\hline \begin{tabular}{l} 
To clear short fault, clear \\
physical fault, then
\end{tabular} & See Note 2 & \\
\hline \begin{tabular}{l} 
*In all cases faults are reported to the PLC via register entries for corresponding point and type of fault(s). In addition, \\
the fault lamp for the corresponding group will blink until fault indication is cleared. Any points with detected short faults \\
will be turned off independent of the command state from the PLC. \\
\hline \begin{tabular}{l} 
Note 1: In partial test mode an open fault indication will be cleared by writing a 1 to the output point independent of \\
the actual status of the output wiring.
\end{tabular} \\
\hline \begin{tabular}{l} 
Note 2: In partial test mode a short fault indication will be cleared by writing a 0 to the output point independent of the \\
actual status of the output wiring.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}

\section*{B882-116 24 Vdc Output, Switch Settings}

A two-position dip switch located on the rear of the module is used to select one of two test modes on a group basis. No pulse test mode detects open circuits only when the output is OFF, and shorts circuits only when the point is ON. Pulse test mode pulses the output to the opposite of the command state to determine the status of the output load. Each individual switch relate s to each group of eight output points. For example, DIP switch position \#1 when set to ON enables pulse test fault sensing for group 1 (points 1-8). When a fault is detected the corresponding FAULT LED flashes independent of the test mode. When the switch is in the OFF position, no pulse test is performed.
The pulse dip-switch settings for the B882-116 module is shown below.

> PULSE TEST SWITCH 2 POSITION DIP SWITCH
> TOP OF MODULE


10
ON OFF
LEFT RIGHT
UP DOWN
```

SWITCHES FUNCTIONS
SW1 = 0 GROUP 1, PULSE TEST ENABLED
= 1 GROUP 1,NO TEST
SW2 = 0 GROUP 2, PULSE TEST ENABLED
= 1 GROUP 2,NO TEST

```

Note: When using binary and BCD format, remember that output 16 is the LSB of word one and word two is ignored by the module.

\section*{B882-116 24 Vdc Output, Specifications}

\section*{B882-116 Specification Table}
\begin{tabular}{|l|l|}
\hline Description & 24 Vdc output \\
\hline Number of Points & 16 \\
\hline Number of Groups & 2 \\
\hline Outputs per Group & 8 \\
\hline Working Voltage & \(19.2-30.0\) Vdc \\
\hline
\end{tabular}

Note: The 24 V field supply must be rated to supply output load current +.5 A for the module, +5 A surge rating. This 5 A surge rating is required to correctly detect short circuits. Group input power fusing is recommended. The fuse should be rated for expected load current plus 5 A slo-blow.

Note: Low-voltage
When field supply drops from 24 to 0 V , an output current of up to 15 mA may be generated to points that are OFF. When field supply is below 19.2 V , reported output fault flags may be incorrect.

Module B882-116 Specification Table, Continued
\begin{tabular}{|l|l|}
\hline ON State Voltage Drop & 0.5 Vdc maximum @ 0.5 A \\
\hline \multirow{2}{*}{ OFF State Leakage Current } & 3.0 mA maximum at 30.0 Vdc \\
\cline { 2 - 2 } & Maximum allowable load resistance \(6 \mathrm{k} \Omega\) \\
\hline
\end{tabular}

Note: \(3 \mathrm{~mA} \times 6 \mathrm{k} \Omega=18 \mathrm{~V}\)-i.e. leakage current produces enough voltage on a 6 \(k \Omega\) load resistor to simulate a valid input signal.

Module B882-116 Specification Table, Continued
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Inrush Current} & 1.0 A peak for 0.1 ms at 4 pulses \(/ \mathrm{s}\) while carrying 0.5 Adc \\
\hline \multirow[t]{3}{*}{Continuous Current} & Maximum & 0.5 A \\
\hline & Maximum/group & 4.0 A \\
\hline & Maximum/ module & 8.0 A \\
\hline \multicolumn{2}{|l|}{Maximum Load Current} & 10 mA \\
\hline \multicolumn{2}{|l|}{Maximum Load Inductance} & \(0.5 \mathrm{H} @ 0.5 \mathrm{~A}, 4 \mathrm{~Hz}\) switching \\
\hline \multicolumn{2}{|l|}{Maximum Load Capacitance} & 4 F @ 4 Hz maximum switching frequency \\
\hline \multirow[t]{3}{*}{Power Required} & +5 V & 350 mA maximum all outputs ON \\
\hline & +4.3 V & 10 mA \\
\hline & -5 V & 0 mA (not used) \\
\hline \multicolumn{2}{|l|}{Terminal Connector} & AS-8535-000 \\
\hline
\end{tabular}

\section*{B882-116 Parameter Configuration}

Parameter and Default Values

Parameter Configuration Window
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{BIDIR 2 REG} \\
\hline \multicolumn{3}{|l|}{\(\sqrt{\text { [H] Config }}\)} \\
\hline Parameter Name & Value & \\
\hline \(\cdots \mathrm{MAPPING}\) & BIT (\%I-1X\%M-0X) & v \\
\hline -- INPUTS STARTING ADDRESS & 1 & \\
\hline ---INPUTS ENDING ADDRESS & 32 & \\
\hline \(\stackrel{\text { - OUTPUTS STARTING ADDRESS }}{ }\) & 1 & \\
\hline - OUTPUTS ENDING ADDRESS & 32 & \\
\hline --OUTPUT TYPE & BINARY & \(\nabla\) \\
\hline
\end{tabular}

Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
BIT (\%I- \\
1X\%M-0X)
\end{tabular} & \begin{tabular}{l} 
WORD (\%IW- \\
3X\%MW-4X)
\end{tabular} & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 32 & 2 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

\section*{Mapping Parameter References}
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l} 
Reference \\
Type \\
Inputs
\end{tabular} & \begin{tabular}{l} 
Mapped as 32 bits input \\
1 x \\
or \\
Mapped as 2 registers input \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 32 bits input \\
\%lx \\
or \\
Mapped as 2 words input \\
\(\%\) IWx
\end{tabular} \\
\hline \begin{tabular}{l} 
Reference \\
Type \\
Outputs
\end{tabular} & \begin{tabular}{l} 
Mapped as 32 bits output \\
0x \\
or \\
Mapped as 2 registers output \\
\(3 x\)
\end{tabular} & \begin{tabular}{l} 
Mapped as 32 bits output \\
\%Mx \\
or \\
Mapped as 2 words output \\
\%MWx
\end{tabular} \\
\hline \begin{tabular}{l} 
Output \\
Type
\end{tabular} & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\title{
800 Series Special Purpose Modules
}

\section*{Introduction}

\section*{At a Glance}

This part provides an overview of the 800 Series special purpose modules. The content describes the modules' features.

What's in this Part?

This part contains the following chapters:
\begin{tabular}{|c|l|l|}
\hline Chapter & Chapter Name & Page \\
\hline 60 & B882-239 High Speed Counter & 585 \\
\hline 61 & B883-001 High Speed Counter & 593 \\
\hline 62 & B883-101 and B883-111 CAM & 599 \\
\hline 63 & B883-200 Thermocouple Input Module & 605 \\
\hline 64 & B883-201 RTD Input & 613 \\
\hline 65 & B884-002 PID & 621 \\
\hline 66 & B885-002 ASCII / BASIC & 629 \\
\hline
\end{tabular}

\section*{B882-239 High Speed Counter}

\section*{60}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B882-269 High Speed Counter module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B882-239 High Speed Counter, Overview & 586 \\
\hline B882-239 High Speed Counter, Keying and Wiring & 587 \\
\hline B882-239 High Speed Counter, Specifications & 589 \\
\hline B882-239 Parameter Configuration & 591 \\
\hline
\end{tabular}

\section*{B882-239 High Speed Counter, Overview}
\begin{tabular}{|c|c|}
\hline Overview & \begin{tabular}{l}
The B882-239 High Speed Counter module consists of two identical and independent counters that can be used in a variety of counting and comparison operations. Each counter is capable of counting up to 30,000 pulses per second. The B882 has a maximum count rate of either 30 kHz or 350 Hz and interfaces directly with OURBUS. The counting function is done by internal logic within the module itself and independent of controller scanning. \\
There are four field inputs, three field outputs, two user-selectable DIP switch inputs, a preset input from the programmable controller, and finally, an actual count output to the controller.
\end{tabular} \\
\hline Features & \begin{tabular}{l}
- 2 independent counters \\
- 0 to 30 kHz operation with a selectable low frequency filter \\
- Each counter counts to 9999 \\
- The two counters can be cascaded to count to 99,999,999 \\
- Readily configurable to other applications \\
- Four field inputs ( 0 to 32 VDC, true low) and three field outputs ( 0 to 32 VDC, true low) per counter \\
- Counts high speed field pulses independent of the controller scan \\
- Each counter automatically reports its current count to the PLC every scan \\
- 800 Series diagnostic features such as personality code, health bit, field side status indicators, and communications ACTIVE indicator \\
- Standard 800 Series industrial-grade design
\end{tabular} \\
\hline
\end{tabular}

\section*{B882-239 High Speed Counter, Keying and Wiring}

Overview
Terminal
Numbering and Output Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. Make field connections to the B882-239 via a high density 24 position plug with screw terminals. The screw terminals accept either solid or standard wire of 14 AWG or less and have a UL rating of 300VAC. Pin numbers are indicated with a label on both the plug and housing. The filed connector is polarized so that it cannot be seated upside down.

Mechanical
Keying

Keying or housing slot key pin installation for the B882-239 module

\(=P i n\)

\section*{B882-239 High Speed Counter, Specifications}

Specification Table contains circuit, electrical, and system characteristics of the B882-239. Table
\begin{tabular}{|c|c|c|}
\hline Characteristic & \multicolumn{2}{|l|}{Description} \\
\hline Number of counters & \multicolumn{2}{|l|}{2} \\
\hline Number of auxiliary inputs & \multicolumn{2}{|l|}{6} \\
\hline Number of outputs & \multicolumn{2}{|l|}{6} \\
\hline Operating Voltage & \multicolumn{2}{|l|}{\(5-24 \mathrm{Vdc}\)} \\
\hline Overvoltage & \multicolumn{2}{|l|}{32 V} \\
\hline \multirow[t]{3}{*}{Power required} & +5 V & 188 mA \\
\hline & -5V & 0 mA \\
\hline & -4.3 V & 0 mA \\
\hline \multirow[t]{3}{*}{Voltage range} & 5 Vdc & 2.4 to 5.5 Vdc \\
\hline & 12 Vdc & 6 to 16 Vdc \\
\hline & 24 Vdc & 12 to 32 Vdc \\
\hline Logical "1" & 1.1 V (min) neg thresh 2.2 V (typ) neg thresh & True for both inputs and outputs \\
\hline Logical "0" & \multicolumn{2}{|l|}{3.5 V (max) pos thresh 2.7 V (typ) pos thresh} \\
\hline Hysteresis & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 0.36 \vee(\mathrm{~min}) \\
& 0.49 \vee(\mathrm{typ})
\end{aligned}
\]} \\
\hline \multirow[t]{2}{*}{Maximum count frequency} & high & 30 kHz \\
\hline & Iow & 350 Hz \\
\hline Input voltage range & \multicolumn{2}{|l|}{0 V to field supply input voltage ( 32 V max)} \\
\hline \multirow[t]{3}{*}{Topology} & \multicolumn{2}{|l|}{2 counters per module} \\
\hline & Counter 1 & Unidirectional up \\
\hline & Counter 2 & Unidirectional up \\
\hline \multicolumn{3}{|l|}{Visual indicators (LEDs)} \\
\hline & 1 FIELD POWER & On when field power is present \\
\hline
\end{tabular}


\section*{B882-239 Parameter Configuration}

\section*{Parameter and}

Parameter Configuration Window Default Values


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
BIT (\%I- \\
1 X\%M-0X)
\end{tabular} & \begin{tabular}{l} 
WORD (\%IW- \\
\(3 X \% M W-4 X)\)
\end{tabular} & \\
\hline Inputs Starting Address & 129 & 1 & \\
\hline Inputs Ending Address & 160 & 2 & \\
\hline Outputs Starting Address & 129 & 1 & \\
\hline Outputs Ending Address & 160 & 2 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l}
Reference \\
Type \\
Inputs
\end{tabular} & \begin{tabular}{l}
Mapped as 32 bits input \\
1x \\
or \\
Mapped as 2 registers input 3x
\end{tabular} & \begin{tabular}{l}
Mapped as 32 bits input \% lx \\
or \\
Mapped as 2 words input \%IWx
\end{tabular} \\
\hline \begin{tabular}{l}
Reference \\
Type Outputs
\end{tabular} & \begin{tabular}{l}
Mapped as 32 bits output \\
0x \\
or \\
Mapped as 2 registers output \(4 x\)
\end{tabular} & \begin{tabular}{l}
Mapped as 32 bits output \%Mx \\
or \\
Mapped as 2 words output \%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B883-001 High Speed Counter}

\section*{61}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B883-001 High Speed Counter Module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B883-001 High Speed Counter, Overview & 594 \\
\hline B883-001 High Speed Counter, Keying and Wiring & 595 \\
\hline B883-001 High Speed Counter, Specifications & 597 \\
\hline B883-001 Parameter Configuration & 598 \\
\hline
\end{tabular}

\section*{B883-001 High Speed Counter, Overview}
Overview \begin{tabular}{l} 
The B883-001 High Speed Counter Module consists of two separate and \\
independent counters and associated logic, and controls up to three outputs. After \\
being configured, the module can operate independently of the PC and react to \\
external events faster than the PC scan time. The module counters have the \\
following characteristic: \\
Counter \#1 has bi-directional (up/down) count capability and has two inputs, two set \\
points, a programmable maximum count, and two outputs. Counter 1 will also accept \\
input from a quadrature type device such as an encoder. \\
Counter \#2 is an up counter and has one input, a programmable maximum count, \\
and one output. \\
Both counters accept pulsed inputs of 0 to 5,0 to 12, or 0 to 24 VDC at frequencies \\
up to 50 KHz. the B883 options are selected by commands from the PC and by \\
terminal wiring. \\
Counter \#1 has three modes of operation. Counter \#2 can accept input either from \\
an external source or from one of two internal clocks. Both counters can be \\
configured to operate in a wide variety of applications (refer to the section on \\
programming the B883)
\end{tabular}

\section*{B883-001 High Speed Counter, Keying and Wiring}

\section*{Overview}

Terminal
Numbering and
Output
Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B883-001 module.
\begin{tabular}{|c|c|}
\hline Counter 2 Output - & 10 \\
\hline Return - & 9 \\
\hline Counter 2 Enable - & 8 \\
\hline Counter 2 Reset - & 7 \\
\hline Counter 2 Input - & 6 \\
\hline Counter 2 Frequency - & 5 \\
\hline Return - & 4 \\
\hline Counter 1 Output 2 - & 3 \\
\hline Counter 1 Output 1 - & 2 \\
\hline Return - & 1 \\
\hline Counter 1 Enable - & 10 \\
\hline Counter 1 Marker - & 9 \\
\hline Counter 1 Preset - & 8 \\
\hline Input Select - & 7 \\
\hline Counter 1 Input B - & 6 \\
\hline Counter 1 Input A - & 5 \\
\hline Counter 1 Frequency - & 4 \\
\hline Return - & 3 \\
\hline Voltage Reference - & 2 \\
\hline Return - & 1 \\
\hline
\end{tabular}

Mechanical
Keying

The following figure shows the keying for the the B883-001 module.


\section*{B883-001 High Speed Counter, Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B883-001 Specifications} \\
\hline \multicolumn{2}{|l|}{Number of Counters} & 2 \\
\hline \multicolumn{2}{|l|}{Number of Auxiliary Inputs} & 6 \\
\hline \multicolumn{2}{|l|}{Number of Outputs} & 3 \\
\hline \multicolumn{2}{|l|}{Operating voltage} & \(5-24 \mathrm{Vdc}\) \\
\hline \multicolumn{2}{|l|}{Overvoltage} & Up to 30 Vdc \\
\hline \multirow[t]{3}{*}{Power Required} & +5V & 677 mA \\
\hline & +4.3 V & 0 mA \\
\hline & -5V & 0 mA \\
\hline \multirow[t]{3}{*}{Voltage Range} & 5 Vdc & 2.4 to 5.5 Vdc \\
\hline & 12 Vdc & 6 to 16 Vdc \\
\hline & 24 Vdc & 12 to 32 Vdc \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Transition \\
5 Vdc \\
12 Vdc \\
24 Vdc
\end{tabular}} & 0 to 1 & 1 to 0 \\
\hline & 2.4 Vdc & 1.6 Vdc \\
\hline & 5.6 Vdc & 4.0 Vdc \\
\hline & 11.2 Vdc & 8.0 Vdc \\
\hline \multicolumn{2}{|l|}{Max Count Frequency} & 50 kHz \\
\hline \multicolumn{2}{|l|}{Ramp Time} & 7 V per sec \\
\hline \multirow[t]{2}{*}{Topology: 2 counters/ module} & Counter 1 & bidirectional up/down \\
\hline & Counter 2 & unidirectional up \\
\hline \multirow[t]{4}{*}{Visual indicators} & 1 LED/output & "on" when output is on \\
\hline & 1 "field power" indicator & "on" when field power is present \\
\hline & 1 "active" indicator & "on" when good communication with PC \\
\hline & 1 "PWR" indicator & "on" when backplane power applied \\
\hline
\end{tabular}

\section*{B883-001 Parameter Configuration}

Parameter and
Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
WORD (\%IW- \\
3X\%MW-4X)
\end{tabular} & BIT (\%I-1X\%M-OX) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 3 & 48 & \\
\hline Input Type & BINARY & - & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 3 & 48 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|l|l|l|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference & Mapped as 48 bits input & \begin{tabular}{l} 
Mapped as 48 bits input \\
Type \\
Inputs
\end{tabular} \\
\begin{tabular}{l} 
\%x \\
or \\
Mapped as 3 registers input \\
3 x
\end{tabular} & \begin{tabular}{l} 
or \\
Mapped as 3 words input \\
\%IWx
\end{tabular} \\
\hline \begin{tabular}{l} 
Reference \\
Type \\
Outputs
\end{tabular} & \begin{tabular}{l} 
Mapped as 48 bits output \\
Ox \\
or \\
Mapped as 3 registers output \\
4 x
\end{tabular} & \begin{tabular}{l} 
Mapped as 48 bits output \\
\%Mx \\
or \\
Mapped as 3 words output \\
\%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B883-101 and B883-111 CAM}

\section*{62}

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B883-101\& B883-111CAM Modules.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B883-101 \& B883-111 CAM, Overview & 600 \\
\hline B883-101 and B883-111 CAM, Keying and Wiring & 601 \\
\hline B883-101 and B883-111 CAM, Specifications & 602 \\
\hline B883-101 and B883-111 Parameter Configuration & 603 \\
\hline
\end{tabular}

\section*{B883-101 \& B883-111 CAM, Overview}

\section*{Overview The B883-111 CAM module with velocity compensation and the B883-101 CAM module are 800 series input/output (I/O) modules with added microprocessor control capabilities. These modules are used to automate the operation of metal shaping power presses for any mass production industry such as motor vehicle manufacture and assembly. Both models of the CAM module are physically indistinguishable and will be discussed as a single unit. \\ The CAM module receives a twelve-bit (plus control) parallel position code from an encoder. The module then transmits an eight-bit parallel control code to its discrete outputs based upon the received position data. \\ Operating instructions in command form are loaded into the module from a programmable controller by way of the I/O system. After the commands are loaded, position codes received by the module are processed and outputted by the CAM module at a 4.000 Hertz rate. This speed is in excess of the PC's scan rate. A total of 16 output intervals may be defined and distributed at random among eight outputs. \\ CAM module inputs will be accepted in binary, binary coded decimal (BCD) or Gray code. \\ If your application requires velocity compensation, choose the B883-111 module. The B883-111 module compensates for changes in velocity.}

\section*{B883-101 and B883-111 CAM, Keying and Wiring}

\section*{Overview}

Terminal
Numbering and
Output
Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B883-101 and B883-111 modules.
\begin{tabular}{|c|c|c|c|c|}
\hline Power Common - & 1 & 11 & - & Field Power \\
\hline O/P 1 - & 2 & 12 & - & NC \\
\hline O/P 2 - & 3 & 13 & - & NC \\
\hline O/P 3 - & 4 & 14 & - & NC \\
\hline O/P 4 - & 5 & 15 & - & NC \\
\hline NC - & 6 & 16 & - & O/P 5 \\
\hline NC - & 7 & 17 & - & O/P 6 \\
\hline NC - & 8 & 18 & - & O/P 7 \\
\hline NC - & 9 & 19 & - & O/P 8 \\
\hline Field Power - & 10 & 20 & - & Power Common \\
\hline
\end{tabular}

The following figure shows the keying for the the B883-101 and B883-111 modules.


\section*{B883-101 and B883-111 CAM, Specifications}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{13}{*}{Specification Table} & \multicolumn{3}{|l|}{The following table provides the specifications for the unit.} \\
\hline & \multicolumn{3}{|l|}{B883-101 \& B883-111 Specifications} \\
\hline & \multicolumn{2}{|l|}{Number of Inputs} & 12 \\
\hline & \multicolumn{2}{|l|}{Number of Outputs} & 8 \\
\hline & \multicolumn{2}{|l|}{Supply Voltage} & Max. 7 Vdc \\
\hline & \multicolumn{2}{|l|}{Operating Voltage} & 20.4-28.8 Vdc 25 mA -1.9 A \\
\hline & \multicolumn{2}{|l|}{Maximum velocity} & 4000 counts/sec \\
\hline & \multicolumn{2}{|l|}{Topology} & 8 positive true saturated switches per module (12 Bit TTL/CMOS input) \\
\hline & \multirow[t]{3}{*}{Power required} & + 5 V & 1000 mA \\
\hline & & +4.3 V & 0 mA \\
\hline & & -5V & 0 mA \\
\hline & \multirow[t]{2}{*}{Visual indicators} & 1 active indicator & "on" when good communication with PC \\
\hline & & 1 run indicator & "on" when in run mode \\
\hline
\end{tabular}

\section*{B883-101 and B883-111 Parameter Configuration}

Parameter and
Parameter Configuration Window Default Values


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
WORD (\%IW- \\
3X\%MW-4X)
\end{tabular} & BIT (\%I-1X\%M-0X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 3 & 48 & \\
\hline Input Type & BINARY & - & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 3 & 48 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l}
Reference \\
Type \\
Inputs
\end{tabular} & \begin{tabular}{l}
Mapped as 48 bits input 1x \\
or \\
Mapped as 3 registers input 3x
\end{tabular} & \begin{tabular}{l}
Mapped as 48 bits input \% Ix \\
or \\
Mapped as 3 words input \%IWx
\end{tabular} \\
\hline \begin{tabular}{l}
Reference \\
Type Outputs
\end{tabular} & \begin{tabular}{l}
Mapped as 48 bits output \\
0x \\
or \\
Mapped as 3 registers output 4x
\end{tabular} & \begin{tabular}{l}
Mapped as 48 bits output \%Mx \\
or \\
Mapped as 3 words output \%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\title{
B883-200 Thermocouple \\ Input Module
}

\section*{63}

\section*{At a Glance}
\begin{tabular}{l|l|l|}
\hline Purpose & \begin{tabular}{l} 
This chapter describes the functional and physical characteristics of the B883-200 \\
Thermocouple Input Module.
\end{tabular} \\
\begin{tabular}{l} 
What's in this \\
Chapter?
\end{tabular} & This chapter contains the following topics: & Page \\
\hline Topic & 606 \\
\hline B883-200 Thermocouple Input, Overview & 607 \\
\hline B883-200 Thermocouple Input, Keying and Wiring & 609 \\
\hline B883-200 Thermocouple Input, Specifications & 610 \\
\hline B883-200 Parameter Configuration &
\end{tabular}

\section*{B883-200 Thermocouple Input, Overview}

\begin{abstract}
Overview The Modicon B883-200 Thermocouple Input Module is a smart I/O module that multiplexes up to ten thermocouples into three consecutive input registers of the control system.
Each B883-200 module provides reference junction temperature compensation, open circuit detection, and linearization for ten thermocouples. Also built-in are selfcalibration, internal diagnostics, and 800 -series bus diagnostics.
Any mix of type B, E, J, K, R, S, T or N thermocouple operations or simple -20 to +80 mV input operations may be set by the user under program control.
For the thermocouple inputs, the PLC can access individual temperature readings in degrees Centigrade, Fahrenheit or in compensated millivolts. Each time the PLC scans theB883-200 module, it receives the specified temperature or millivolt reading along with open-circuit and module health data. The thermocouple wire is terminated on a special isothermal connector assembly on the housing. Each B883200 module uses three consecutive input registers and three output registers.
\end{abstract}

\section*{B883-200 Thermocouple Input, Keying and Wiring}

\section*{Overview}

Terminal
Numbering and
Output
Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B883-200 module.
\begin{tabular}{|c|c|c|c|c|}
\hline NC - & 1 & 2 & & - NC \\
\hline THERM \(1+-\) & 3 & 4 & & - THERM 1 - \\
\hline 1 - & 5 & 6 & & - THERM \(2+\) \\
\hline THERM 2- - & 7 & 8 & & - 2 \\
\hline THERM 3+ - & 9 & 10 & & - THERM 3- \\
\hline 3 - & 11 & 12 & & - THERM 4+ \\
\hline THERM 4- - & 13 & 14 & & - 4 \\
\hline NC - & 15 & 16 & & - THERM 5+ \\
\hline THERM 5- - & 17 & 18 & & - 5 \\
\hline GND - & 19 & 20 & & - NC \\
\hline CJC 2+ - & 21 & 22 & & - CJC 2- \\
\hline THERM 6+ - & 23 & 24 & & - THERM 6- \\
\hline 6 - & 25 & 26 & & - THERM 7+ \\
\hline THERM 7 - & 27 & 28 & & - 7 \\
\hline THERM 8+ - & 29 & 30 & & - THERM 8- \\
\hline 8 - & 31 & 32 & & - THERM 9+ \\
\hline THERM 9-- & 33 & 34 & & - 9 \\
\hline NC - & 35 & 36 & & - THERM \(10+\) \\
\hline THERM 10- - & 37 & 38 & & 10 \\
\hline NC - & 39 & 40 & & NC \\
\hline
\end{tabular}

Mechanical
Keying

The following figure shows the keying for the the B883-200 module.


\section*{B883-200 Thermocouple Input, Specifications}

\section*{Specification}

Table

The following table provides the specifications for the unit.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ B883-200 Specifications } \\
\hline Description & \begin{tabular}{l} 
Thermocouple input \\
Type \(\mathrm{B}, \mathrm{E}, \mathrm{J}, \mathrm{K}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{N}\) or linear mV
\end{tabular} \\
\hline Inputs per Modules & 10 \\
\hline Max. Common Mode Voltage & \(200 \mathrm{Vdc} / \mathrm{Vac}\) (peak) \\
\hline \begin{tabular}{l} 
Resolution \\
Under Program Control
\end{tabular} & \begin{tabular}{l}
\(1^{\circ} \mathrm{C}, 1^{\circ} \mathrm{F}, 10 \mathrm{mV}\) \\
\(0.1^{\circ} \mathrm{C}, 0.1^{\circ} \mathrm{F}, 1 \mathrm{mV}\)
\end{tabular} \\
\hline \multirow{3}{|l|}{\begin{tabular}{l} 
Update Time
\end{tabular}} & \begin{tabular}{l}
100 ms per selected channel \\
1 sec. max. all channels
\end{tabular} \\
\hline Power-up Time & 13 sec. max. \\
\hline Warm-up Time & 2 Min. max. \\
\hline Interface to PC & \begin{tabular}{l}
3 output registers (4xxxx) \\
3 input registers (3xxxx) \\
Junction CJC=cold
\end{tabular} \\
\hline Power required & +5 V \\
\hline & 400 mA \\
\hline & +4.3 V \\
\cline { 2 - 3 } & -5 V \\
\hline
\end{tabular}

\section*{B883-200 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{BIDIR 3 REG} \\
\hline \multicolumn{2}{|l|}{\(\sqrt{\text { Wibl Config }}\)} \\
\hline Parameter Name & Value \\
\hline \(\cdots \mathrm{MAPPING}\) & WORD (\%IW-3X\%MW - \({ }^{\text {a }}\) \\
\hline -- INPUTS STARTING ADDRESS & 1 \\
\hline - INPUTS ENDING ADDRESS & 3 \\
\hline \(\cdots\) INPUT TYPE & BINARY \\
\hline - - OUTPUTS STARTING ADDRESS & 1 \\
\hline \(\cdots\) - OUTPUTS ENDING ADDRESS & 3 \\
\hline -- OUTPUT TYPE & BINARY \\
\hline 進 ... & \\
\hline
\end{tabular}

Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
WORD (\%IW- \\
\(3 X \% M W-4 X)\)
\end{tabular} & BIT (\%I-1X\%M-0X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 3 & 48 & \\
\hline Input Type & BINARY & - & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 3 & 48 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type Inputs & \begin{tabular}{l}
Mapped as 48 bits input 1 x \\
or \\
Mapped as 3 registers input \(3 x\)
\end{tabular} & Mapped as 48 bits input \% lx or Mapped as 3 words input \%IWx \\
\hline Reference Type Outputs & \begin{tabular}{l}
Mapped as 48 bits output \\
0x \\
or \\
Mapped as 3 registers output 4 x
\end{tabular} & \begin{tabular}{l}
Mapped as 48 bits output \%Mx \\
or \\
Mapped as 3 words output \%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B883-201 RTD Input}

\section*{64}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B883-201 RTD Input Module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B883-201 RTD Input, Overview & 614 \\
\hline B883-201 RTD Input, Keying and Wiring & 615 \\
\hline B883-201 RTD Input, Specifications & 617 \\
\hline B883-201 Parameter Configuration & 618 \\
\hline
\end{tabular}

\section*{B883-201 RTD Input, Overview}
\begin{tabular}{ll} 
Overview & The B883-201 Resistance Temperature Detector (RTD) module is a smart I/O \\
module that multiplexes up to eight two- or three-wire RTDs into three consecutive \\
input registers of a control system. \\
Each B883-201 module provides linearization for any mix of 8 RTDs. Also built-in \\
are self-calibration, internal diagnostics, and 800-Series bus diagnostics. \\
American standard platinum, European standard platinum per DIN, or linear \\
resistance input can be selected by the user under program control. \\
When an RTD is selected, the PLC can access each individual temperature reading \\
in Centigrade, Fahrenheit or in compensated millivolts. Each time the PLC scans the \\
B883-201 module, it receives the specified temperature or millivolt reading along \\
with open-circuit and module health data. \\
Each B883-201 uses three consecutive input registers and three output registers. \\
These registers are assigned to the same slot within the channel.
\end{tabular}

\section*{B883-201 RTD Input, Keying and Wiring}

\section*{Overview}

Terminal
Numbering and
Output Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B883-201 module.


Mechanical
Keying

The following figure shows the keying for the the B883-201 module.


\section*{B883-201 RTD Input, Specifications}

\section*{Specification}

Table

The following table provides the specifications for the unit.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ B883-201Specifications } \\
\hline Description & \begin{tabular}{l} 
RTD input \\
American or European \(100 \Omega\) Platinum
\end{tabular} \\
\hline Inputs per Module & 8 \\
\hline Max. Common Mode Voltage & \(7 \mathrm{Vdc} / \mathrm{Vac}\) (peak) \\
\hline \begin{tabular}{l} 
Resolution \\
Under Program Control
\end{tabular} & \begin{tabular}{l}
\(1^{\circ} \mathrm{C}, 1^{\circ} \mathrm{F}, 10 \Omega\) \\
\(0.1^{\circ} \mathrm{C}, 0.1^{\circ} \mathrm{F}, 1 \Omega\)
\end{tabular} \\
\hline Update Time & \begin{tabular}{l}
125 ms per selected channel \\
15 sec. max. all channels
\end{tabular} \\
\hline Power-up Time & 13 sec. max. \\
\hline Warm-up Time & 2 min. max. \\
\hline Interface to PC & \begin{tabular}{l}
3 output registers (4xxxx) \\
3 input registers (3xxxx)
\end{tabular} \\
\hline Power required & 640 mA \\
\hline & +5 V \\
\hline & +4.3 V \\
\hline Visual indicators & -5 V \\
\hline
\end{tabular}

\section*{B883-201 Parameter Configuration}

\section*{Parameter and Default Values}

Parameter Configuration Window
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{BIDIR 3 REG} \\
\hline \multicolumn{2}{|l|}{\(\sqrt{\text { 品 Config }}\)} \\
\hline Parameter Name & Value \\
\hline \(\cdots \mathrm{MAPPING}\) & WORD (\%IW-3X\%MW - \({ }^{\text {a }}\) \\
\hline \(\cdots\) - INPUTS STARTING ADDRESS & 1 \\
\hline - INPUTS ENDING ADDRESS & 3 \\
\hline \(\cdots\) INPUT TYPE & BINARY \\
\hline \(\cdots\) OUTPUTS STARTING ADDRESS & 1 \\
\hline \(\cdots\) OUTPUTS ENDING ADDRESS & 3 \\
\hline -- OUTPUT TYPE & BINARY \\
\hline ITII ... & \\
\hline
\end{tabular}

Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
WORD (\%IW- \\
3 \%MW-4X)
\end{tabular} & BIT (\%I-1X\%M-0X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 3 & 48 & \\
\hline Input Type & BINARY & - & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 3 & 48 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline \begin{tabular}{l}
Reference \\
Type \\
Inputs
\end{tabular} & \begin{tabular}{l}
Mapped as 48 bits input 1x \\
or \\
Mapped as 3 registers input \(3 x\)
\end{tabular} & \begin{tabular}{l}
Mapped as 48 bits input \% x \\
or \\
Mapped as 3 words input \%IWx
\end{tabular} \\
\hline \begin{tabular}{l}
Reference \\
Type \\
Outputs
\end{tabular} & \begin{tabular}{l}
Mapped as 48 bits output \\
0x \\
or \\
Mapped as 3 registers output \\
4 x
\end{tabular} & \begin{tabular}{l}
Mapped as 48 bits output \%Mx \\
or \\
Mapped as 3 words output \%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B884-002 PID}

\section*{65}

\section*{At a Glance}

\section*{Purpose \\ This chapter describes the functional and physical characteristics of the B884-002 PID Module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B884-002 PID, Overview & 622 \\
\hline B884-002 PID Control, Keying and Wiring & 623 \\
\hline B884-002 PID Control, Specifications & 625 \\
\hline B884-002 Parameter Configuration & 626 \\
\hline
\end{tabular}

\section*{B884-002 PID, Overview}

\begin{abstract}
Overview
The B884-002 PID Module provides two completely independent and separate Proportional Integral Derivative (PID) loops. You can configure the PID loops for control strategies including open loop, closed loop, PID, PID on error squared and cascade control.
You configure the PID module using a configuration program (Part \#SW-BDD-3DA) on an IBM or compatible personal computer. You can download the data either through the PLC or directly to the modules, where it is stored in a non-volatile EEPROM memory.
To ensure the highest accuracy and reliability, the module has fully floating, isolated and protected inputs and outputs. The module has seven independently configured analog inputs ( 4 voltage/current, 2 thermocouple, 1 frequency), two analog outputs, two discrete inputs and two discrete outputs. Each loop is assigned two voltage and one thermocouple inputs.
There is no need for any analog adjustments such as trimpots for zero, offset, or span, which results in superior accuracy, stability and reliability.
\end{abstract}

\section*{B884-002 PID Control, Keying and Wiring}

\section*{Overview}

Terminal
Numbering and
Output
Connections

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B884-002 module.


\section*{Mechanical \\ Keying}

The following figure shows the keying for the the B884-002 module.


\section*{B884-002 PID Control, Specifications}

Specification
Table

The following table provides the specifications for the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{B884-002 Specifications} \\
\hline \multicolumn{2}{|l|}{Description} & PID Control Module \\
\hline \multicolumn{2}{|l|}{External power supply requirements} & 24 VDC +/- \(20 \%\) at 0.3 A \\
\hline \multicolumn{2}{|l|}{Algorithms} & P, PI, PD, PID \\
\hline \multicolumn{2}{|l|}{Topology} & \begin{tabular}{l}
4 analog inputs \\
2 thermocouple inputs \\
1 pulse input \\
2 discrete inputs \\
2 analog outputs \\
2 discrete outputs
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Interface to PC} & \begin{tabular}{l}
4 output registers ( 4 xxxx ) \\
4 input registers (3xxxx) \\
A=analog)
\end{tabular} \\
\hline \multirow[t]{3}{*}{Power required} & + 5 V & 25-50 mA \\
\hline & +4.3 V & 2 mA \\
\hline & -5V & 0 mA \\
\hline Visual indicators & 1 "active" indicator & "on" when good communication with PC \\
\hline
\end{tabular}

\section*{B884-002 Parameter Configuration}

Parameter and
Default Values
Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} & Description \\
\hline Mapping & \begin{tabular}{l} 
WORD (\%IW- \\
3 \%MW-4X)
\end{tabular} & BIT (\%I-1X\%M-0X) & \\
\hline \begin{tabular}{l} 
Inputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Inputs Ending \\
Address
\end{tabular} & 4 & 64 & \\
\hline Input Type & BINARY & - & \\
\hline \begin{tabular}{l} 
Outputs Starting \\
Address
\end{tabular} & 1 & 1 & \\
\hline \begin{tabular}{l} 
Outputs Ending \\
Address
\end{tabular} & 4 & 64 & \\
\hline Output Type & BINARY & BCD & \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type Inputs & \begin{tabular}{l}
Mapped as 64 bits input \\
1x \\
or \\
Mapped as 4 registers input 3x
\end{tabular} & \begin{tabular}{l}
Mapped as 64 bits input \%|x \\
or \\
Mapped as 4 words input \%IWx
\end{tabular} \\
\hline Reference Type Outputs & \begin{tabular}{l}
Mapped as 64 bits output \\
0x \\
or \\
Mapped as 4 registers output 4 x
\end{tabular} & \begin{tabular}{l}
Mapped as 64 bits output \%Mx \\
or \\
Mapped as 4 words output \%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{B885-002 ASCII / BASIC}

\section*{66}

\section*{At a Glance}

\section*{Purpose This chapter describes the functional and physical characteristics of the B885-002 ASCII / BASIC Module.}

What's in this Chapter?

This chapter contains the following topics:
\begin{tabular}{|l|l|}
\hline Topic & Page \\
\hline B885-002 ASCII / BASIC, Overview & 630 \\
\hline B885-002 ASCII / BASIC, Keying and Wiring & 631 \\
\hline B885-002 ASCII / BASIC, Specifications & 632 \\
\hline B885-002 Parameter Configuration & 633 \\
\hline
\end{tabular}

\section*{B885-002 ASCII / BASIC, Overview}

\section*{Overview \\ The B885-002 ASCII / BASIC Module runs user-written BASIC programs independently of the controller's memory logic and scan. It also performs READ and WRITE commands to and from serial devices connected to either of the module's two RS 232/422 ports (jumper selectable). In addition, its real-time clock/calendar allows the module to run a BASIC program or flag and return a value to the PLC at a user specified date and time. \\ The module provides report generation, interactive operator interface, high level math, peripheral communication and data storage. \\ Using a dumb terminal or an IBM personal computer with Emulator Software (Part \# SW-E885-1DA), you program the module's 53K of user memory. If you need more memory, you may provide an additional 32K of user EPROM. You can designate part of the memory as retentive variable memory to store formulas or other process parameters.}

\section*{B885-002 ASCII / BASIC, Keying and Wiring}

\section*{Overview}

\section*{Terminal \\ Numbering and \\ Output \\ Connections}

User connections are made to a standard screw terminal strip.The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B885-002 module.


Mechanical
Keying

The following figure shows the keying for the the B885-002 module.


\section*{B885-002 ASCII / BASIC, Specifications}

\section*{Specification} Table

The following table provides the specifications for the unit.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ B885-002 Specifications } & \multicolumn{2}{l|}{} \\
\hline Description & \begin{tabular}{l} 
ASCII/Basic 64 k RAM, \\
2 RS232/422 Ports
\end{tabular} \\
\hline Interface to PC & \begin{tabular}{l}
6 input registers (3xxxx) \\
6 output registers (4xxxx)
\end{tabular} \\
\hline Carrier detect (CD) & \begin{tabular}{l} 
For RS232 leave pins 18 and 19 \\
unconnected \\
For RS422 connect pins 18 and 19
\end{tabular} \\
\hline Power Required & RS 422 mode & RS 232 mode \\
\hline+5 Vdc & 500 mA & 400 mA \\
\hline+4.3 Vdc & 1760 mA & 1000 mA \\
\hline-5 Vdc & 0 mA & 0 mA \\
\hline Visual indicators & 1 "active" indicator & "on" when good communication with PC \\
\cline { 2 - 3 } & 2 "port" indicators & "on" when active communications \\
\hline & \begin{tabular}{l}
1 "battery ok" \\
indicator
\end{tabular} & "on" when battery is ok \\
\hline & 1 "run" indicator & \\
\hline & \begin{tabular}{l}
1 "power ok" \\
indicator
\end{tabular} & \\
\hline & & \\
\hline
\end{tabular}

\section*{B885-002 Parameter Configuration}

Parameter and
Default Values Default Values

Parameter Configuration Window


Module Configuration
\begin{tabular}{|l|l|l|}
\hline Parameter Name & \begin{tabular}{l} 
Value \\
(Default)
\end{tabular} & \begin{tabular}{l} 
Value \\
(Options Available)
\end{tabular} \\
\hline Mapping & WORD (\%IW-3X\%MW-4X) & BIT (\%I-1X\%M-0X) \\
\hline Inputs Starting Address & 1 & 1 \\
\hline Inputs Ending Address & 6 & 96 \\
\hline Input Type & BINARY & - \\
\hline Outputs Starting Address & 1 & 1 \\
\hline Outputs Ending Address & 6 & 96 \\
\hline Output Type & BINARY & BCD \\
\hline
\end{tabular}

Mapping Parameter References
\begin{tabular}{|c|c|c|}
\hline & Modsoft, Concept, ProWORX & Unity \\
\hline Reference Type Inputs & \begin{tabular}{l}
Mapped as 96 bits input \\
1x \\
or \\
Mapped as 6 registers input \(3 x\)
\end{tabular} & \begin{tabular}{l}
Mapped as 96 bits input \% x \\
or \\
Mapped as 6 words input \%IWx
\end{tabular} \\
\hline Reference Type Outputs & \begin{tabular}{l}
Mapped as 96 bits output \\
\(0 x\) \\
or \\
Mapped as 6 registers output \\
4x
\end{tabular} & \begin{tabular}{l}
Mapped as 96 bits output \%Mx \\
or \\
Mapped as 6 words output \%MWx
\end{tabular} \\
\hline Output Type & BIN/BCD & BIN/BCD \\
\hline
\end{tabular}

\section*{Index}


\section*{Numerics}

800 Series I/O Modules
I/O Map, 38
984LL notation, 25, 32

\section*{A}
addressing
examples, 34
flat, 32
modes, 31
topological, 33
ASP890300, 87

\section*{B}

B802-008 115 Vac Output, 279
B803-008 115 Vac Input, 285
B804-116 115 Vac Output, 291
B804-148 48 Vac Output, 297
B805-016 115 Vac Input, 303
B806-032 115 Vac Output, 309
B806-124 24 Vac Output, 317
B807-132 115 Vac Input, 323
B808-016 230 Vac Output, 331
B809-016 230 Vac Input, 337
B810-008 115 Vac Isolated Output, 343
B814-108 Relay Output, 349
B817-116 115 Vac Isolated Input, 357
B817-216 230 Vac Isolated Input, 357
B818 20-28 Vac Discrete Output, 559
B818 24 Vac Output, 365

B819-232 230 Vac Input, 371
B820-008 10-60 Vdc Output, 377
B821-108 10-60 Vdc Input, 383
B824-016 24 Vdc Output, 389
B825-106 24 Vdc Input, 395
B827-032 24 Vdc Input, 403
B828-016 5 V TTL Output, 409
B829-116 Fast Response 5 V TTL Input, 415
B832-016 24 Vdc Output, 421
B833-016 24 Vdc Input, 427
B836-016 12-250 Vdc Isolated Output, 433
B837-016 \(24 \mathrm{Vac} / \mathrm{Vdc}\) Input, 439
B838-032 24 Vdc Output, 445
B840-108 Relay Output, 451
B842-008 Reed Relay Output, 457
B846-001 Input Multiplexer, 111
B846-002 Input Multiplexer, 111
B849-016 48 V ac/dc Input, 463
B853-016 115 Vac/125 Vdc Input, 469
B855-016 Intrinsically Safe Input, 475
B862-001 Register Output, 485
B863-032 Monitored 24 Vdc Input, 493
B863-132 Vdc Input, 499
B864-001 Register Output, 507
B865-001 Register Input, 515
B868-001 Register Output, 525
B869-002 Register Input, 535
B872-100 Analog Output, 117
B872-200 Analog Output, 135
B873-002 Analog Input, 153
B873-012 Analog Input, 169
B875-002 Analog Input, 153

B875-012 Analog Input, 169
B875-102 High Speed Analog Input, 183
B875-111 Analog Input, 213
B875-200 Configurable A/D Input, 243
B877-111 Analog Input, 213
B881-001 Latched 24 Vdc Input, 545
B881-508 125 Vdc Output, 553
B882-032 24 Vdc Diagnostic Output, 559
B882-116 24 Vdc Output, 571
B882-239 High Speed Counter, 585
B883-001 High Speed Counter, 593
B883-101 CAM Module, 599
B883-111 CAM Module, 599
B883-200 Thermocouple Input, 605
B883-201 RTD Input, 613
B884-002 PID, 621
B885-002 ASCII / BASIC, 629

\section*{C}
cable shields requirements, 44

\section*{F}
field connections
B33-016 24 Vdc Input, 429
B803-008 115 Vac Input, 287
B804-116 115 Vac Output, 293
B804-148 48 Vac Output, 299
B805-016 115 Vac Input, 305
B806-032 115 Vac Output, 312
B806-124 24 Vac Output, 320
B807-132 115 Vac Input, 326
B808-016 230 Vac Output, 333
B809-016 230 Vac Input, 339
B810-008 115 Vac Output, 345
B814-108 Relay Output, 352
B817-116 115 Vac Isolated Input, 359
B817-216 230 Vac Isolated Input, 359
B818 24 Vdc Output, 367
B820-008 10-60 Vdc Output, 379
B821-108 10-60 Vdc Input, 385
B824-016 24 Vdc Output, 391
B825-016 24 Vdc Input, 397
B827-032 24 Vdc Input, 405
B828-016 5 V TTL Output, 411
B829-116 FR 5 V TTL Input, 417
B832-016 24 Vdc Output, 423
B836-016 12-250 Vdc Output, 435
B837-016 24 Vac/Vd Input, 441
B838-032 24 Vdc Output, 447
B840-108 Relay Output, 454
B842-008 Reed Relay Output, 459
B849-016 48 V ac/dc Input, 466
B853-016 115 Vac/125 Vdc Input, 472
B862-001 Register Output, 488
B863-032 Monitored 24 Vdc Input, 495
B863-132 24 Vdc Input, 502
B864-001 Register Output, 510
B865-001 Register Output, 519
B868-001 Register Output, 528
B869-002 Register Output, 539
B872-100, 122
B872-200 Analog Output, 142
B873-002 Analog Input, 164
B873-012 Analog Input, 178
B875-002 Analog Input, 164
B875-012 Analog Input, 178

B875-111 Analog Input, 220
B875-200 Configurable A/D Input, 250
B881-001 Latched 24 Vdc Input, 549
B881-508 125 Vdc Output, 556
B882-032 24 Vdc Diagnostic Output, 563
B882-116 24 Vdc Output, 573

\section*{G}

\section*{grounding}
guidelines, 39
requirements, 44

\section*{I}

I/O line requirements, 44
IEC notation, 25, 32
indicators, 37

\section*{J}

J890 RIO Interface, 55
J892 RIO Interface, 55

\section*{K}
key pin assignments, 47

\section*{L}
line filters requirements, 44

\section*{N}
notation
984LL, 25, 32
IEC, 25, 32

\section*{P}

P890 RIO Processor, 75
P892 RIO Processor, 75
parameter configurations
B802-008 115 Vac Output, 283
B803-008 115 Vac Input, 289
B804-116 115 Vac Output, 295
B804-148 48 Vac Output, 301
B805-016 115 Vac Input, 307
B806-032 115 Vac Output, 315
B806-124 24 Vac Output, 322
B807-132 115 Vac Input, 330
B808-016 230 Vac Output, 335
B809-016 230 Vac Input, 341
B810-008 115 Vac Isolated Output, 347
B814-108 Relay Output, 354
B816 Isolated Output, 355
B817-116 115 Vac Isolated Input, 363
B817-216 230 Vac Isolated Input, 363
B818 20-28 Vac Discrete Output, 570
B818 24 Vac Output, 369
B819-232 230 Vac Input, 375
B820-003 10-60 Vdc Output, 381
B821-108 10-60 Vdc Input, 388
B824-016 Vdc Output, 393
B825-016 24 Vdc Input, 399
B826-032 24 Vdc Output, 401
B827-032 24 Vdc Input, 407
B828-016 5 V TTL Output, 413
B829-116 FR 5 V TTL Input, 419
B832-016 24 Vdc Output, 425
B833-016 24 Vdc Input, 431
B836-016 12-250 Vdc Output, 438
B837-016 \(24 \mathrm{Vac} / \mathrm{Vdc}\) Input, 443
B838-032 24 Vdc Output, 449
B840-108 Relay Output, 456
B842-008 Reed Relay Output, 461
B846-001 Input Multiplexers, 116
B846-002 Input Multiplexers, 116
B849-016 48 V ac/dc Input, 468
B853-016 115 Vac/125 Vdc Input, 474
B855-016 Intrinsically Safe Input, 483
B862-001 Register Output, 492
B863-032 Monitored 24 Vdc Input, 497
B863-132 24 Vdc Input, 505
B864-001 Register Output, 514
B865-001 Register Input, 524
B868-001 Register Output, 532
B869-002 Register Input, 542

B872-100 Analog Output, 133
B872-200 Analog Output, 152
B873-002 Analog Input, 167
B873-012 Analog Input, 181
B875-002 Analog Input, 168
B875-012 Analog Input, 182
B875-102 High Speed Analog Input, 212
B875-111 Analog Input, 239
B875-200 Configurable A/D Input, 273
B877-111 Analog Input, 240
B881-001 Latched 24 Vdc Input, 551
B881-508 125 Vdc Output, 558
B882-032 Vdc Diagnostic Output, 569
B882-116 24 Vdc Output, 580
B882-239 High Speed Counter, 591
B883-001 High Speed Counter, 598
B883-101 CAM, 603
B883-111 CAM, 603
B883-200 Thermocouple Input, 610
B883-201 RTD Input, 618
B884-002 PID, 626
B885-002 ASCII/BASIC, 633
power supplies
ASP890300, 92, 103, 105
safety message, 92
power supply requirements, 44

\section*{Q}
quick start tests, 50

\section*{S}
specifications
ASP890300, 104
B802-008 48 Vac Output, 282
B803-008 115 Vac Input, 288
B804-116 48 Vac Output, 294
B804-148 48 Vac Output, 300
B805-016 115 Vac Input, 306
B806-032 115 Vac Output, 314
B806-124 24 Vac Output, 321
B807-132 115 Vac Input, 329
B808-016 230 Vac Output, 334
B809-016 230 Vac Input, 340
B810-008 115 Vac Isolated Output, 346
B814-108 Relay Output, 353
B817-116 115 Vac Isolated Input, 362
B817-216 230 Vac Isolated Input, 362
B818 20-28 Vac Output, 568
B818 24 Vdc Output, 368
B819-232 32 Point Input, 374
B820-008 10-60 Vdc Output, 380
B821-108 10-60 Vdc Input, 386
B824-016 24 Vdc Output, 392
B825-016 24 Vdc Input, 398
B827-032 24 Vdc Input, 406
B828-016 5 V TTL Output, 412
B829-116 FR 5 V TTL Input, 418
B832-016 24 Vdc Output, 424
B833-016 24 Vdc Input, 430
B836-016 12-250 Vdc Output, 437
B837-016 24 V ac/dc Input, 442
B838-032 24 Vdc Output, 448
B840-108 Relay Output, 455
B842-008 Reed Relay Output, 460
B846-001 Input Multiplexers, 115
B846-002 Input Multiplexers, 115
B849-016 48 V ac/dc Input, 467
B853-016 115 Vac/125 Vdc Input, 473
B855-016 Intrinsically Safe Input, 482
B862-001 Register Output, 491
B863-032 Monitored 24 Vdc Input, 496
B863-132 24 Vdc Input, 504
B864-001 Register Output, 513
B865-001 Register Input, 522
B868-001 Register Output, 531
B869-002 Register Output, 541
B872-100 Analog Input, 131
B872-200 Analog Output, 151
B873-002 Analog Input, 166
B873-012 Analog Input, 180
B875-002 Analog Input, 166
B875-012 Analog Input, 180
B875-102 High Speed Analog Input, 210
B875-111 Analog Input, 237
B875-200 Configurable A/D Input, 271
B881-001 Latched 24 Vdc Input, 550
B881-508 125 Vdc Output, 557
B882-032 24 Vdc Diagnostic Output, 567
B882-116 24 Vdc Output, 578
B882-239 High Speed Counter, 589
B883-001 High Speed Counter, 597
B883-101 CAM, ..... 602
B883-111 CAM, 602
B883-200 Thermocouple Input, 609
B883-201 RTD Input, 617
B884-002 PID Control, 625
B885-002 ASCII/BASIC, 632
environmental-analog modules, 51
environmental-discrete modules, 52
J890 and J892, 73, 84
mechanical-analog modules, 51
mechanical-discrete modules, 52
Ttechnical specifications summary
analog modules, 27
discrete modules, 28
RIO modules, 26
special purpose modules, 30
V
values
reading, 33```


[^0]:    PLEASE NOTE Electrical equipment should be serviced only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. This document is not intended as an instruction manual for untrained persons.
    © 2004 Schneider Electric. All Rights Reserved.

