Modicon Quantum 800 Series I/O Modules with Unity Reference Manual

September 2004

Document Set

Presentation

This package contains the following Quantum with Unity Pro manuals:

- Quantum Hardware Reference Manual
- Quantum Discrete and Analog I/O Reference Manual
- Quantum Experts and Communication Reference Manual
- Grounding and Electromagnetic Compatibility of PLC Systems User Manual
- Quantum 800 Series I/O Reference Manual

Table of Contents

	Safety Information17
	About the Book
Part I	Overview of Modicon Quantum 800 Series I/O Moduleswith Unity21Introduction21
Chapter 1	Modicon Quantum 800 Series I/O Modules with Unity — Overview and Configuration 23 Configuring Modicon Quantum 800 Series I/O Modules with Unity 24 Technical Features Overview—Modicon Quantum 800 Series I/O 26
Chapter 2	Modicon Quantum 800 Series I/O Modules with Unity Addressing Modes 31 Flat Addressing—Modicon Quantum 800 Series I/O Modules 32 Topological Addressing—Modicon Quantum 800 Series I/O Modules with Unity 33 34 Addressing Example—Modicon Quantum 800 Series I/O Modules with Unity . 34
Chapter 3	Modicon Quantum 800 Series I/O Modules with Unity

	Discrete Module Specifications—Modicon Quantum 800 Series I/O Modules with Unity	. 52
Part II	800 Series RIO Modules	
Chapter 4	J890 & J892 RIO Interface Modules	. 56 . 57 . 60 . 63 . 66 . 69 . 71 . 72
Chapter 5	P890 & P892 RIO ProcessorsP890 & P892 OverviewP890 & P892 IndicatorsP890 & P892 Power AvailableP890 & P892 Switch Settings for the Drop AddressP890 & P892 InstallationP890 & P892 Specifications	. 76 . 78 . 79 . 80 . 83
Chapter 6	ASP890300 RIO Processor ASP890300 General Description. Indicators. Power, Backplanes, I/O and Typical Configuration . Switch Settings Diagnostics . Installation . Specifications.	. 88 . 91 . 92 . 95 . 99 102
Part III	800 Series Analog I/O Modules1 Introduction	
Chapter 7	B846-001 & B846-002 Input Multiplexers 1 B846-001 & B846-002 Overview 1 B846-001 & B846-002 Field Connections 1 B846-001 & B846-002 Specifications 1 B846-001 Parameter Configuration 1	112 114 115

Chapter 8	B872-100 Analog Output 1 B872-100, Analog Output 1 B872-100 Data Value to Output Conversion 1 B872-100 Field Connections 1 B872-100 - Setting Module DIP-Switch 1 Calibration 1 B872-100 Specifications 1 B872-100 Parameter Configuration 1	118 122 124 126 131
Chapter 9	B872-200 Analog Output 1 B872-200 Overview. 1 B872-200 Data Value to Output Conversion. 1 B872-200 Field Connections. 1 B872-200 - Setting Module Jumpers. 1 B872-200 - Setting Module DIP-Switch. 1 B872-200 Calibration. 1 B872-200 Specifications. 1 B872-200 Parameter Configuration. 1	136 138 142 144 145 147 151
Chapter 10	B873-002 & B875-002 Analog Input. 1 B873-002 & B875-002 Overview. 1 B873-002 & B875-002 Switch Settings and Indicators 1 B873-002 & B875-002 Installation. 1 B873-002 & B875-002 Calibration. 1 B873-002 & B875-002 Calibration. 1 B873-002 & B875-002 Throughput Rate. 1 B873-002 & B875-002 Field Connections. 1 B873-002 & B875-002 Specifications 1 B873-002 & B875-002 Specifications 1 B873-002 Parameter Configuration. 1 B875-002 Parameter Configuration. 1	154 155 156 159 163 164 166
Chapter 11	B873-012 & B875-012 Analog Input. 1 B873-012 & B875-012 Overview. 1 B873-012 & B875-012 Switch Settings and Indicators 1 B873-012 & B875-012 Switch Settings and Indicators 1 B873-012 & B875-012 Installation. 1 B873-012 & B875-012 Calibration. 1 B873-012 & B875-012 Throughput Rate. 1 B873-012 & B875-012 Field Connections. 1 B873-012 & B875-012 Specifications 1 B873-012 Parameter Configuration. 1 B875-012 Parameter Configuration. 1	170 171 172 175 177 178 180 181
Chapter 12	B875–102 High Speed Analog Input. 1 B875–102 High Speed Analog Input, Inputs. 1 B875–102 High Speed Analog Input, Performance Considerations. 1 B875–102 High Speed Analog Input, Communications with the PLC. 1	184 187

	B875–102 High Speed Analog Input, Typical Circuit and Ground Connections.B875–102 High Speed Analog Input, Switch Settings.B875–102 High Speed Analog Input, IndicatorsB875–102 High Speed Analog Input, Recalibration.B875-102 High Speed Analog Input, Installation.B875–102 High Speed Analog Input, SpecificationsB875–102 High Speed Analog Input, SpecificationsB875–102 High Speed Analog Input, SpecificationsB875–102 High Speed Analog Input, SpecificationsB875-102 High Speed Analog Input, Specifications	
Chapter 13	B875-111 & B877-111 Analog Input B875-111 Analog Input, Overview B875-111 Analog Input, Module Configuration B875-111 Analog Input, Field Connections B875-111 Analog Input, Field Connections B875-111 Analog Input, Field Connections B875-111 Analog Input, Application Example B875-111 Analog Input, Calibration B875-111 Analog Input, Quick Reference B875-111 Analog Input, Specifications B875-111 Parameter Configuration B877-111 Parameter Configuration B877-111, Terminal Numbering and Output Connections	213 214 216 220 227 233 236 237 239 240
Chapter 14	B875–200 Configurable A/D Input B875–200 Configurable A/D Input, Overview B875–200 Configurable A/D Input, Input Pack Insertion B875–200 Configurable A/D Input, Module Configuration B875–200 Configurable A/D Input, Module Configuration B875–200 Configurable A/D Input, Field Connections B875–200 Configurable A/D Input, Calibration B875–200 Configurable A/D Input, Available Input Packs B875–200 Configurable A/D Input, Input Pack Simplified Schematics B875–200 Configurable A/D Input, Specifications B875–200 Configurable A/D Input, Specifications	
Part IV	800 Series Discrete I/O Modules	
Chapter 15	B802–008 115 Vac OutputB802–008 115 Vac Output, OverviewB802–008 115 Vac Output, Field ConnectionsB802–008 48 Vac Output, SpecificationsB802–008 Parameter Configuration	280 281 282
Chapter 16	B803–008 115 Vac InputB803–008 115 Vac Input, OverviewB803–008 115 Vac Input, Field Connections.B803–008 115 Vac Input, Specifications.B803–008 Parameter Configuration	286 287 288

Chapter 17	B804–116 115 Vac Output
Chapter 18	B804–148 48 Vac Output 297 B804–148 48 Vac Output, Overview 298 B804–148 48 Vac Output, Field Connections 299 B804–148 48 Vac Output, Specifications 300 B804–148 Parameter Configuration 301
Chapter 19	B805–016 115 Vac Input. 303 B805–016 115 Vac Input, Overview 304 B805–016 115 Vac Input, Field Connections 305 B805–016 115 Vac Input, Field Connections 305 B805–016 115 Vac Input, Specifications 306 B805–016 Parameter Configuration 307
Chapter 20	B806-032 115 Vac Output
Chapter 21	B806–124 24 Vac Output 317 B806–124 24 Vac Output, Overview 318 B806–124 24 Vac Output, Field Connections 320 B806–124 24 Vac Output, Specifications 321 B806–124 Parameter Configuration 322
Chapter 22	B807–132 115 Vac Input. 323 B807–132 115 Vac Input, Overview 324 B807–132 115 Vac Input, Field Connections 326 B807–132 115 Vac Input, Specifications. 329 B807–132 Parameter Configuration 330
Chapter 23	B808–016 230 Vac Output
Chapter 24	B809–016 230 Vac Input. 337 B809–016 230 Vac Input, Overview 338 B809–016 230 Vac Input, Field Connections 339 B809–016 230 Vac Input, Field Connections 339 B809–016 230 Vac Input, Specifications 340

	B809–016 Parameter Configuration	341
Chapter 25	B810–008 115 Vac Isolated Output.3B810–008 115 Vac Output, Overview3B810–008 115 Vac Output, Field Connections3B810–008 115 Vac Isolated Output, Specifications3B810–008 Parameter Configuration3	344 345 346
Chapter 26	B814–108 Relay Output.3B814–108 Relay Output, Overview3B814–108 Relay Output, Configuration3B814–108 Relay Output, Field Connections3B14–108 Relay Output, Specifications3B814–108 Relay Output, Specifications3B814–108 Parameter Configuration3	350 351 352 353
Chapter 27	B816 Isolated Output. 3 B816 Parameter Configuration 3	
Chapter 28	B817–116 and B817–216 115/230 Vac Isolated Input 3 B817–116 (115 Vac) and B817–216 (230 Vac) Isolated Input, Overview 3 B817–116 (115 Vac) and B817–216 (230 Vac) Isolated Input, Field 3 Connections. 3 B817–116 (115 Vac) and B817–216 (230 Vac) Isolated Input, Field 3 Connections. 3 B817–116 (115 Vac) and B817–216 (230 Vac) Isolated Input, Field 3 B817–116 (115 Vac) and B817–216 (230 Vac) Isolated Input, Specifications. 3 B817–116 and B817–216 Parameter Configuration 3	358 359 362
Chapter 29	B818 24 Vac Output 3 B818—Setting Module DIP Switch 3 B818 24Vdc Output, Field Connections. 3 B818 24 Vdc (True High) Output, Specifications. 3 B818 Parameter Configuration 3	366 367 368
Chapter 30	B819–232 230 Vac Input 3 B819-232, 230 Vac Input, Keying and Wiring 3 B819-232, 32 Point Input, Specifications 3 B819-232 Parameter Configuration 3	372 374
Chapter 31	B820-008 10-60 Vdc Output 3 B820-008 10-60 Vdc Output, Overview 3 B820-008 10-60 Vdc Output, Field Connections 3 B820-008 10-60 Vdc Output, Field Connections 3 B820-008 10-60 Vdc Output, Specifications 3 B820-008 10-60 Vdc Output, Specifications 3 B820-008 10-60 Vdc Output, Specifications 3	378 379 380
Chapter 32	B821–108 10—60 Vdc Input (True High) 3 B821–108 10—60 Vdc Input (True High), Overview 3 B821–108 10—60 Vdc Input (True High), Field Connections 3 B821–108 10—60 Vdc Input (True High), Field Connections 3 B821–108 10—60 Vdc Input (True High), Field Connections 3	384 385

	B821–108 Parameter Configuration	. 388
Chapter 33	B824–016 24 Vdc Output (True High) B824–016 24 Vdc Output (True High), Overview B824–016 24 Vdc Output (True High), Field Connections B824–016 24 Vdc Output (True High), Specifications B824–016 Parameter Configuration	. 390 . 391 . 392
Chapter 34	B825–016 24 Vdc Input (True High). B825–016 24 Vdc Input (True High), Overview. B825–016 24 Vdc Input (True High), Field Connections. B825–016 24 Vdc Input (True High), Specifications. B825–016 Parameter Configuration	. 396 . 397 . 398
Chapter 35	B826–032 24 Vdc Output (True High) B826–032 Parameter Configuration	
Chapter 36	B827–032 24 Vdc Input (True High). B827–032 24 Vdc Input (True High), Overview. B827–032 24 Vdc Input (True High), Field Connections. B827–032 24 Vdc Input (True High), Specifications. B827–032 Parameter Configuration	. 404 . 405 . 406
Chapter 37	B828–016 5 V TTL OutputB828–016 5 V TTL Output, OverviewB828–016 5 V TTL Output, Field ConnectionsB828–016 5 V TTL Output, SpecificationsB828–016 Parameter Configuration	. 410 . 411 . 412
Chapter 38	B829–116 Fast Response 5 V TTL Input.B829–116 Fast Response 5 V TTL Input, Overview.B829–116 Fast Response 5 V TTL Input, Field Connections.B829–116 Fast Response 5 V TTL Input, Specifications.B829–116 Parameter Configuration .	. 416 . 417 . 418
Chapter 39	B832–016 24 Vdc Output (True Low)B832–016 24 Vdc Output (True Low), Overview.B832–016 24 Vdc Output (True Low), Field Connections.B832–016 24 Vdc Output (True Low), Specifications.B832–016 Parameter Configuration	. 422 . 423 . 424
Chapter 40	B833–016 24 Vdc Input (True Low)	. 427 . 428 . 429 . 430

Chapter 41	B836–016 12—250 Vdc Isolated Output.AB836–016 12—250 Vdc Isolated Output, OverviewB836–016 12—250 Vdc Isolated Output, Field Connections.B836–016 12—250 Vdc Isolated Output, Specifications.B836–016 12—250 Vdc Isolated Output, Specifications.B836–016 Parameter ConfigurationB836–016 Parameter Configuration	434 435 437 438
Chapter 42	B837–016 24 Vac/Vdc Input (True High)	440 441 442
Chapter 43	B838–032 24 Vdc Output (True High).4B838–032 24 Vdc Output (True High), Overview5B838–032 24 Vdc Output (True High), Field Connections.5B838–032 24 Vdc Output (True High), Specifications.5B838–032 24 Vdc Output (True High), Specifications.5B838–032 Parameter Configuration5	446 447 448
Chapter 44	B840–108 Relay Output 4 B840–108 Relay Output, Overview 5 B840–108 Relay Output, Field Connections 5 840–108 Relay Output, Specifications 5 B840–108 Relay Output, Specifications 5 <tr< th=""><th>452 454 455</th></tr<>	452 454 455
Chapter 15	B842–008 Reed Relay Output	157
Chapter 45	B842–008 Reed Relay Output, Overview B842–008 Reed Relay Output, Field Connections	458 459 460
Chapter 45	B842–008 Reed Relay Output, OverviewB842–008 Reed Relay Output, Field Connections842–008 Reed Relay Output, Specifications	458 459 460 461 163 464 466 467
	B842–008 Reed Relay Output, Overview B842–008 Reed Relay Output, Field Connections 842–008 Reed Relay Output, Specifications B842–008 Parameter Configuration B849–016 48 Vac/Vdc Input (True High) B849–016 48 Vac/Vdc Input (True High), Overview B849–016 48 Vac/Vdc Input (True High), Field Connections 849–016 48 Vac/Vdc Input (True High), Field Connections 849–016 48 Vac/Vdc Input (True High), Specifications	458 459 460 461 163 464 466 467 468 469 470 472 473

Chapter 49	B862–001 Register Output.485B862–001 Register Output, Overview.486B862–001 Register Output, Switch Settings.487B862–001 Register Output, Field Connections.488B862–001 Register Output, Specifications.491B862–001 Register Output, Specifications.491
Chapter 50	B863–032 Monitored 24 Vdc Input493B863–032 Monitored 24 Vdc Input, Overview.494B863–032 Monitored 24 Vdc Input, Field Connections.495B863–032 Monitored 24 Vdc Input, Specifications.496B863–032 Parameter Configuration497
Chapter 51	B863–132 24 Vdc Input. 499 B863–132 24 Vdc Input, Overview 500 B863–132 24 Vdc Input, Switch Settings 501 B863–132 24 Vdc Input, Field Connections 502 B863–132 24 Vdc Input, Field Connections 503 B863–132 24 Vdc Input, Specifications 503 B863–132 24 Vdc Input, Specifications 504 B863–132 Parameter Configuration 505
Chapter 52	B864-001 Register Output.507B864-001 Register Output, Overview.508B864-001 Register Output, Switch Settings.509B864-001 Register Output, Field Connections.510B864-001 Register Output, Specifications513B864-001 Register Output, Specifications513B864-001 Parameter Configuration514
Chapter 53	B865–001 Register Input515B865–001 Register Input, Overview516B865–001 Register Input, Switch Settings518B865–001 Register Output, Field Connections519B865–001Register Input, Specifications522B865–001 Parameter Configuration524
Chapter 54	B868–001 Register Output.525B868–001 Register Output, Overview.526B868–001 Register Output, Switch Settings.527B868–001 Register Output, Field Connections.528B868–001 Register Output, Field Connections.528B868–001 Register Output, Specifications531B868–001 Parameter Configuration532
Chapter 55	B869–002 Register Input535B869–002 Register Input, Overview536B869–002 Register Input, Switch Settings538B869–002 Register Output, Field Connections539B869–002 Register Output, Specifications541

	B869–002 Parameter Configuration5	42
Chapter 56	B881–001 Latched 24 Vdc Input50B881–001 Latched 24 Vdc Input, Overview.50B881–001 Latched 24 Vdc Input, Field Connections.50B881–001 Latched 24 Vdc Input, Specifications.50B881–001 Latched 24 Vdc Input, Specifications.50B881–001 Parameter Configuration50	646 649 650
Chapter 57	B881–508 125 Vdc Output. 5 B881–508 125 Vdc Output, Overview 5 B881–508 125 Vdc Output, Fault Conditions. 5 881–508 125 Vdc Output, Field Connections 5 881–508 125 Vdc Output, Specifications 5 B881–508 125 Vdc Output, Specifications 5 B881–508 125 Vdc Output, Specifications 5 B881–508 Parameter Configuration 5	54 555 56 57
Chapter 58	B882–032 24 Vdc Diagnostic Output and B818 20-28 Vac	
	Discrete Output56B882-032 24 Vdc Diagnostic Output, Overview57B882-032 24 Vdc Diagnostic Output, Fault Conditions57B882-032 24 Vdc Diagnostic Output, Field Connections57B882-032 24 Vdc Diagnostic Output, Field Connections57B818, 20-28 Vac Output, Keying and Wiring57B882-032 24 Vdc Diagnostic Output, Dip Switch Settings57B882-032 24 Vdc Diagnostic Output, Dip Switch Settings57B882-032 24 Vdc Diagnostic Output, Specifications57B818, 20-28 Vac Output, Specifications57B818, 20-28 Vac Output, Specifications57B818 Parameter Configuration57B818 Parameter Configuration57	60 61 63 64 66 67 68 68
Chapter 59	B882–116 24 Vdc Output. 5 B882–116 24 Vdc Output, Overview 5 B882–116 24 Vdc Output, Field Connections 5 B882–116 24 Vdc Output, Field Connections 5 B882–116 24 Vdc Output, Configuration 5 B882–116 24 Vdc Output, Switch Settings 5 B882–116 24 Vdc Output, Specifications 5 B882–116 Parameter Configuration 5	72 73 74 77 78
Part V	800 Series Special Purpose Modules	
Chapter 60	B882–239 High Speed Counter.54B882–239 High Speed Counter, Overview5B882–239 High Speed Counter, Keying and Wiring5B882–239 High Speed Counter, Specifications5B882–239 Parameter Configuration5	86 87 89

Chapter 61	B883-001 High Speed Counter 8 B883-001 High Speed Counter, Overview 8 B883-001 High Speed Counter, Keying and Wiring 8 B883-001 High Speed Counter, Specifications 8 B883-001 Parameter Configuration 8	594 595 597
Chapter 62	B883–101 and B883–111 CAM. Second State B883-101 & B883-111 CAM, Overview. Second State B883–101 and B883–111 CAM, Keying and Wiring. Second State B883–101 and B883–111 CAM, Specifications Second State B883–101 and B883–111 CAM, Specifications Second State B883–101 and B883–111 Parameter Configuration Second State	600 601 602
Chapter 63	B883–200 Thermocouple Input Module 6 B883–200 Thermocouple Input, Overview 6 B883–200 Thermocouple Input, Keying and Wiring 6 B883–200 Thermocouple Input, Specifications 6 B883–200 Thermocouple Input, Specifications 6 B883–200 Parameter Configuration 6	606 607 609
Chapter 64	B883–201 RTD Input.B883–201 RTD Input, Overview .B883–201 RTD Input, Keying and Wiring .B883–201 RTD Input, Keying and Wiring .B883–201 RTD Input, Specifications .B883–201 Parameter Configuration .	614 615 617
Chapter 65	B884-002 PIDB884-002 PID, OverviewB884-002 PID Control, Keying and WiringB884-002 PID Control, SpecificationsB884-002 PID Control, SpecificationsB884-002 Parameter Configuration	622 623 625
Chapter 66	B885–002 ASCII / BASIC	630 631 632
Index		635

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER

DANGER indicates an imminently hazardous situation, which, if not avoided, **will result** in death, serious injury, or equipment damage.

<u> WARNING</u>

WARNING indicates a potentially hazardous situation, which, if not avoided, **can result** in death, serious injury, or equipment damage.

A CAUTION

CAUTION indicates a potentially hazardous situation, which, if not avoided, **can result** in injury or equipment damage.

PLEASE NOTE Electrical equipment should be serviced only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. This document is not intended as an instruction manual for untrained persons.

© 2004 Schneider Electric. All Rights Reserved.

About the Book

At a Glance

Document Scope This manual is a reference document for the Modicon Quantum 800 Series I/O Modules with Unity. The manual provides an overview, keying and wiring information, specifications, and parameter configuring information for four types of modules:

- RIO drop
- analog
- discrete
- special purpose

Note: 984LL and IEC notation

The manual displays both 984LL and IEC notation, but most module descriptions use 984LL notation. Conversion charts appear in the first chapters.

- (See Converting Direct Address Notation, p. 25)
- (See Introduction, p. 32)

Note: Audience

Users should be familiar with automation controls and be qualified to install and operate automation equipment.

Note: Module availability

- Some modules may no longer be available for sale.
- For the status of particular modules, please contact your local sales office.
- To locate a sales office,
 - 1. visit http://www.schneider-electric.com
 - 2. Select your country in the drop-down menu.

Validity Note	The data and illustrations found in this documentation are not binding. We reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be construed as a commitment by Schneider Electric.		
Related			
Documents	Title of Documentation	Reference Number	
	Quantum Hardware Reference Manual	UNYUSE10010V11E (part of this package)	
	Grounding and Electromagnetic Compatibility of PLC Systems User Manual	UNYUSE10010V11E (part of this package)	
Product Related Warnings	Schneider Electric assumes no responsibility for any errors that may appear in this document. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us. No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric. All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to ensure compliance with documented system data, only the manufacturer should perform repairs to components. When controllers are used for applications with technical safety requirements, please follow the relevant instructions. Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results. Failure to observe this product related warning can result in injury or equipment damage.		
User Comments	We welcome your comments about this document. You can reach us by e-mail at TECHCOMM@modicon.com		

Overview of Modicon Quantum 800 Series I/O Modules with Unity

Introduction					
At a Glance	a Glance This part provides a global overview of the 800 Series I/O modules. The contemprovides the description of generic features common to all modules.				
What's in this	This part	contains the following chapters:			
Part?	Chapter Chapter Name				
			Page		
	1	Modicon Quantum 800 Series I/O Modules with Unity—Overview and Configuration	Page 23		
	1	Modicon Quantum 800 Series I/O Modules with Unity—Overview and	-		

Modicon Quantum 800 Series I/O Modules with Unity—Overview and Configuration

1

At a Glance		
Purpose	This chapter describes both configuring the modules with Unity Pro and the available 800 Series I/O modules, including their basic technical features.	
What's in this Chapter2	This chapter contains the following topics:	1
What's in this Chapter?		Page
	This chapter contains the following topics:	Page 24

Configuring Modicon Quantum 800 Series I/O Modules with Unity

Introduction To configure a Series 800 I/O module under Unity, configure a RIO drop, which contains I/O modules. The following description gives you step by step instructions to implement and configure Series 800 I/O modules into a Modicon Quantum with Unity system.

Adding a

To add a RIO Bus to a Modicon Quantum with Unity system,

Step	Action	Comment
1	From the Project Browser "Configuration" tree, open the local Quantum rack	The graphical representation of the local Quantum rack opens.
2	Double-click an empty slot in the rack where you want to place your RIO head.	The "New Device" dialog window opens.
3	Open the "Communication" tree and double-click on the 140 CRP 93X 00 module.	The RIO head module is added to the local Quantum rack. In the Project Browser "Configuration" tree the "RIO bus" is automatically added.

Adding a 800 I/O Drop

To add a 800 I/O Drop to a Modicon Quantum with Unity system,

Step	Action	Comment
1	From the Project Browser "Configuration" tree, double-click the "RIO bus"	The graphical representation of the RIO bus opens.
2	Double-click an empty node of the RIO bus	The "New Device" dialog window opens.
3	In the "New Device" dialog window, select both the appropriate rack from the "800 IO Drop" tree and a "Drop-end communicator" module.	A new 800 I/O rack containing a communication module is added to your RIO bus.
4	Click OK.	

Adding a 800 To add a new I/O module to your RIO Drop I/O Module Step Action

Step	Action	Comment
1	From the "RIO Bus" configuration window, double-click an empty slot in the rack where you want to place your I/O module.	The "New Device" dialog window opens.
2	From the "New Device" window, open the list of analog or discrete modules and double-click on the appropriate module.	The I/O module is added to the rack.

Configuring a Module

To configure an I/O module,

1. Double click on the module.

When the configuration window opens, enter the following parameters:

Parameter Name	Description
MAPPING	Define whether access is either
	 Bits (%I-1x, %M-0x) Words (%IW-3x, %MW-4x)
INPUTS STARTING ADDRESS	In the address type, as defined by the MAPPING parameter, enter the starting address of the input data.
INPUTS ENDING ADDRESS	Parameter automatically calculated by the system.
OUTPUTS STARTING ADDRESS	In the address type, as defined by the MAPPING parameter, enter the starting address of the output data.
OUTPUTS ENDING ADDRESS	Parameter automatically calculated by the system.
OUTPUT TYPE	Define whether data value is interpreted either as 1. BINARY 2. BCD

Converting Direct Address Notation

Use the following table to convert 984LL notation to IEC notation.

Outputs	984LL Notation	IEC Notation			
and Inputs	Register Addresses	System Bits and Words	Memory Addresses	I/O Addresses	
output	0x	System Bit	%Mx	%Qx	
input	1x	System Bit	%lx	%lx	
input	3x	System Word	%IWx	%IWx	
output	4x	System Word	%MWx	%QWx	

Technical Features Overview—Modicon Quantum 800 Series I/O Modules with Unity

Introduction	 The following tables provide an overview of the technical features for all Series 800 I/O. RIO Interface modules (See <i>RIO Interface Modules, p. 26</i>) Analog I/O modules (See <i>Analog Modules, p. 27</i>) Discrete I/O modules (See <i>Discrete Modules, p. 28</i>) Special Purpose I/O modules (See <i>Special Purpose Modules, p. 30</i>) 				
RIO Interface Modules		0 1 2		,	technical data for the RIO interface dule, see its chapter.
	Module	Туре	Range	Channels	Remarks
	J890	Drop Interface	-	-	-
	J892Drop InterfaceP890Direct Interface				
	P892	Direct Interface	-	-	-

Analog Modules The following table displays a summary of the technical data for the analog modules. For detailed information about a module, see its chapter.

Module	Туре	Range	Channels	Remarks	
B846-001	In	0-5 V 1-5 V +/- 10 V	16	Reed-Relay-Multiplexer for voltage input as front end for A/D-Converter B873/875. 1 Word (Bin)	
B846-002	In	4-20 mA	16	Reed-Relay-Multiplexer for current input (Input impedance 250 Ohm) as front end for A/D-Converter B873/875. 1 Word (Bin)	
B872-100	Out	4-20 mA	4	User supply required.	
B872-200	Out	0-5 VDC 0-10 VDC +/- 5 VDC +/- 10 VDC	4	Operating range selectable per channel. No user supply required.	
B873-002	In	1-5 VDC 4-20 mA	4	4 Words (Bin)	
B875-002	In	1-5 VDC 4-20 mA	8	8 Words (Bin)	
B873-012	In	+/- 10 VDC	4	4 Words Out (Bin)	
B875-012	In	+/- 10 VDC	8	8 Words Out (Bin)	
B875-102	In	1-5 VDC 0-5 VDC 0-10 V +/- 5 V +/- 10 V 4-20 mA 0-20 mA 0-40 mA +/- 20 mA +/- 40 mA	4 (8)	High Speed	
B875-111	In	1-5 VDC 0-5 VDC 0-10 V +/- 5 V +/- 10 V 4-20 mA 0-20 mA +/- 20 mA	8 differential or 16 single		
B875-114	In	0-2 mA	8 differential		
B875-200	In	4-20 mA 1-5 V RTD/TC 0-10 V 0-20 mA	8	A/D Converter with plug able input amplifier modules	

DiscreteThe following table displays a summary of the technical data for the discreteModulesmodules. For detailed information about a module, see its chapter.

Module	Туре	Range	Channels	Remarks
B802-008	Out	80 - 130 Vac cont. / 47 - 63 Hz	8	Individually isolated
B803-008	In	80 - 130 Vac cont. / 47 - 63 Hz	8 Individually isolated	
B804-116	Out	80 - 130 Vac cont. / 47 - 63 Hz	16	Isolated 2 groups / 8 points per group
B804-148	Out	40 - 56 Vac / 47 - 63 Hz	16	Isolated 2 groups / 8 points per group
B805-016	In	80 - 130 Vac cont. / 47 - 63 Hz	16	Isolated 2 groups / 8 points per group
B806-032	Out	80 - 130 Vac cont. / 47 - 63 Hz	32	
B806-124	Out	20 - 28 Vac cont. / 47 - 63 Hz 32 Vac RMS max. for 10 s	32	2 groups / 16 points per group
B807-132	In	80 - 130 Vac cont. / 47 - 63 Hz	32	4 groups / 8 points per group
B808-016	Out	180 - 260 Vac / 47 - 63 Hz	16	2 groups / 8 points per group
B809-016	In	160 - 260 Vac / 47 - 63 Hz	16	2 groups / 8 points per group
B810-008	Out	80 - 130 Vac cont. / 47 - 63 Hz	8	Isolated
B814-108	Out	0 - 30 Vdc 0 - 240 Vac / 47 - 63 Hz	8	Relay
B817-116	In	115 Vac	16	Isolated
B817-216	In	230 Vac	16	Isolated
B820-008	Out	10 - 60 Vdc	8	True high
B821-108	In	10 - 60 Vdc	8	True high
B824-016	Out	20 - 28 Vdc	16	True high
B825-016	In	20 - 28 Vdc	16	True high
B827-032	In	18 - 30 Vdc	32	True high
B828-016	Out	5 V TTL	16	
B829-116	In	5 V TTL	16	High speed TTL

Module	Туре	Range	Channels	Remarks
B832-016	Out	20 - 28 Vdc	16	True low
B833-016	In	20 - 28 Vdc	16	True low
B836-016	Out	12 - 250 Vdc	16	Isolated
B837-016	In	20.4 - 27 Vac / 47 - 63 Hz 19.2 - 30 Vdc	16	Isolated 2 groups / 8 points per group
B838-032	Out	20 - 30 Vdc	32	True high
B840-108	Out	0 - 300 Vdc max. 0 - 230 Vac max. / 47 - 63 Hz	8	Relay
B846-001	In	0-5 V 1-5 V ± 10 V	16	1 Word Out (Bin)
B846-002	In	4-20 mA	16	1 Word Out (Bin)
B849-016	In	41 - 53 Vac / 47 - 63 Hz 39 - 58 Vdc	16	
B853-016	In	80 - 130 Vac / 47 - 63 Hz 85 - 150 Vdc	16	True high
B855-016	In	11.4 - 12.6 Vdc	16	Isolated
B863-032	In	18-30 Vdc true high 24 Vdc nominal	32	
B863-132	In	0 - 30 Vdc	32	
B864-001	Out		8	8 channel reg. mux
B865-001	In	5 V TTL	8	8 channel reg. mux
B881-001	In	20 - 28 Vdc	16	
B881-508	Out	5 - 140 Vdc maximum	8	
B882-032	Out	19.2 - 28 Vdc	32	
B882-116	Out	19.2 - 30 Vdc	16	

Special Purpose	The following table displays a summary of the technical data for the special purpose
Modules	modules. For detailed information about a module, see its chapter.

Module	Туре	Range	Channels	Remarks
B882-239	High Speed Counter	30 kHz 350 Hz		4 inputs 3outputs
B883-001	High Speed Counter	50 kHz	2	3 outputs
B883-101	CAM	4	-	-
B883-200	Thermoco uple Input	Centigrade Farenheit Millivolts	10 ln	Open circuit detect Self-calibrated
B883-201	RTD Input	Centigrade Farenheit	8	American European Linear
B884-002	PID Loop	N/A	2	Open/closed loop
B885-002	ASCII/ BASIC	N/A	2	RS232 RS422

Modicon Quantum 800 Series I/O Modules with Unity Addressing Modes

2

Purpose	To allow an easy transition from the register addressing (3x, 4x) of 984LL to addressing modes used in Unity Pro, this chapter describes Flat Addressing 	o the IEC
	Topological Addressing	
What's in this	Topological Addressing This chapter contains the following topics:	
What's in this Chapter?		Page
	This chapter contains the following topics:	Page 32
	This chapter contains the following topics: Topic	

Flat Addressing—Modicon Quantum 800 Series I/O Modules

Introduction

The Modicon Quantum with Unity modules follow a system of flat address mapping. To work properly. each module requires a determinate number of bits and/or words. The IEC addressing system is equivalent to the 984LL register addressing. Use the following assignments:

- 0x is now %Mx
- 1x is now %lx
- 3x is now %IWx
- 4x is now %MWx

Use the following table to convert 984LL notation to IEC notation.

Outputs	984LL Notation	IEC Notation			
and Inputs	Register Addresses	System Bits and Words	Memory Addresses	I/O Addresses	
output	0x	System Bit	%Mx	%Qx	
input	1x	System Bit	%lx	%lx	
input	3x	System Word	%IWx	%IWx	
output	4x	System Word	%MWx	%QWx	

To access the I/O data of a module,

Step	Action
1	Enter the address range in the configuration screen.

Examples

The following examples show the relationship between 984LL register addressing and IEC addressing: 000001 is now %M1 100101 is now %I101 301024 is now %IW1024 400010 is now %MW10

Topological Addressing—Modicon Quantum 800 Series I/O Modules with Unity

Introduction

Use topological addressing to access I/O data items. Identify the topological location of the module within a Modicon Quantum with Unity system using the following notation:

%<Exchangetype><Objecttype>[\b.e\]r.m.c[.rank]
Abbreviations used:

- **b** = bus
- e = equipment (drop)
- r = rack
- m = module slot
- **c** = channel

Note: When addressing,

- 1. The [\b.e\] defaults to \1.1\ in a local rack and does not need to be specified.
- 2. The rank is an index used to identify different properties of an object with the same data type (value, warning level, error level).
- 3. The rank numbering is zero-based, and if the rank is zero, omit the entry.

For detailed information on I/O variables, please refer to the Unity Pro Reference Manual.

Example

Reading Values

To read	Action
input value (rank = 0) from channel 7 of an analog module located	Enter
in slot 6 of a local rack:	%IW1.6.7[.0]
input value (rank = 0) from channel 7 of an analog module located	Enter
in drop 3 of RIO bus 2:	%IW\2.3\1.6.7[.0]
'out of range' value (rank = 1) from channel 7 of an analog module	Enter
located in slot 6 of a local rack:	%I1.6.7.1[.0]

Addressing Example—Modicon Quantum 800 Series I/O Modules with Unity

Analog Module

The following example compares the 2 possible addressing modes. An 8-channel analog input module B875-200 with the following configuration data is used:

- mounted in slot 5 of the RIO rack #3 located at drop 4 on bus 2
- starting input address is 201 (input word %IW201)
- end input address is 208 (input word %IW208)

To access the I/O data from the module you can use the following syntax:

Module data	Flat addressing	Topological addressing	Concept addressing
Channel 3	%IW203	%IW\2.4\3.5.3	300203

For comparison, the register addressing as used with Concept is added in the last column.

Discrete Module The following example compares the 2 possible addressing modes. An 32-channel discrete output module B838-032 with the following configuration data is used:

- mounted in slot 4 of the RIO rack #3 located at drop 4 on bus 2
- starting output address is 101 (output word %MW101)
- end output address is 102 (output word %MW102)

To access the I/O data from the module you can use the following syntax:

Module data	Flat addressing	Topological addressing	Concept addressing
Output 5	%MW101.11	%QW\2.4\3.4.1.111	300101
Output17	%MW102.15	%QW\2.4\3.4.1.2.15	300102

For comparison, the register addressing as used with Concept is added in the last column. As Concept does not support direct addressing of a bit in a word, the bit extraction has to be performed in the user program.

The same configuration as before but data mapped into bits:

- mounted in slot 4 of the RIO rack #3 located at drop 4 on bus 2
- starting output address is 1 (output %M1)
- end output address is 32 (output %M32)

To access the I/O data from the module you can use the following syntax:

Module data	Flat addressing	Topological addressing	Concept addressing
Output 5	%M5	%Q\2.4\3.4.5	000005
Output17	%M17	%Q\2.4\3.4.17	000017

For comparison, the register addressing as used with Concept is added in the last column.

Modicon Quantum 800 Series I/O Modules with Unity

At a Glance					
Purpose	This chapter describes in brief the Modicon Quantum with Unity 800 Series modules. Detailed information about each module is covered in individual cha	·			
What's in this	This chapter contains the following topics:				
Chapter?	Торіс	Page			
	Main Features—Modicon Quantum 800 Series I/O Modules with Unity	36			
	Indicators-Modicon Quantum 800 Series I/O Modules with Unity	37			
	I/O Map—Modicon Quantum 800 Series I/O Modules with Unity	38			
	Grounding Guidelines—Modicon Quantum 800 Series I/O Modules with Unity	39			
	Installation Guidelines—Modicon Quantum 800 Series I/O Modules with Unity	40			
	Requirements-Modicon Quantum 800 Series I/O Modules with Unity	44			
	CE Installation—Modicon Quantum 800 Series I/O Modules with Unity	45			
	Installation Parts List-Modicon Quantum 800 Series I/O Modules with Unity	46			
	Key Pin Assignments-Modicon Quantum 800 Series I/O Modules	47			
	Quick Start Test-Modicon Quantum 800 Series I/O Modules with Unity	50			
	Analog Module Specifications—Modicon Quantum 800 Series I/O Modules with Unity	51			
	Discrete Module Specifications—Modicon Quantum 800 Series I/O Modules with Unity	52			

Main Features—Modicon Quantum 800 Series I/O Modules with Unity

List of Features Ea

Each module offers

- Status indicators
- Front accessible fuses
- Handle that permits easy installation and removal
- · Safe, nonconductive front that permits easy access of test probes
- Each point electrically isolated from logic by an optical coupler Each module
- Is removable without disturbing rigid field wiring system
- Designed for harsh plant floor environments
- Satisfies SWC requirements of both IEEE and ANSI guidelines

Operating Facts Note the following.

Fact about	Description	
Voltage transients	The I/O signals can withstand the severe voltage transients normally encountered in industrial environments without damage to the I/O module or controller.	
Communication failures	All I/O points shut OFF in the event of a communication failure betweer a Modicon controller and the I/O module. Shut OFF occurs within 300 ms of the signal loss. The module's ACTIVE indicator will also shut OFF.	
Installing modules	The I/O modules can be inserted into any location in the 800 series I/O structure. The module slides easily into the module housing and does not interfere with any other module's operation.	
Logic circuitry	The module's protective case shields the logic circuitry from any electrical interference and minimizes the possibility of any noise being coupled from the user side of the circuitry to adjacent modules.	
Grounding	A ground is automatically established when the module is inserted into the housing. This low impedance earth ground originates from the housing's backplane.	

Indicators—Modicon Quantum 800 Series I/O Modules with Unity

Types of Indicators The status indicators on the front of the module are listed below.

Indicator	Description	
Active	 The green indicator is ON when the module has passed its power diagnostics without error remains ON until the background diagnostics detect 1. an error condition 2. loss of internal voltage 3. loss of communication with the CPU 	
Discrete I/O	hese red output indicators, when ON, indicate that power is available at the output of the module for use by field devices.	
Blown Fuse	These red indicators, when ON, indicate that a fuse is blown.	
Over Range	These red indicators, when ON or FLICKERING, indicate that one or more inputs have exceeded the valid input range.	
Under Range	These red indicators, when ON or FLICKERING, indicate that one or more inputs have dropped below the valid input range.	
Field Power	These red indicators, when ON, indicate that field power is supplied.	

Note: The active indicator does not represent the condition of the I/O points. The indicator may be lit with one or more of the I/O points not working properly.

I/O Map—Modicon Quantum 800 Series I/O Modules with Unity

I/O Map	The I/O Map is used to direct the flow of data between the various I/O modules and the logic program. It is the tie between the references used in the logic program and the I/O module connection points.
Characteristics	The I/O Map also tells the controller how to use an input signal in user logic and where to send an output signal. The format of register data (BCD binary coded decimal or BIN binary) is specified on the I/O Map screen. The screen objective is to load the card selections and reference number selections to complete the configuration of the I/O.
	In the Configuration Overview screen, the number of I/O drops and I/O modules must be specified. These numbers are checked when entries to the I/O Map screen are made.

Grounding Guidelines—Modicon Quantum 800 Series I/O Modules with Unity

Ground and Shield Guidelines	The	following table provides guideline notes on Ground and Shield Practices.
	1	To have proper case ground, the housing must be connected to an earth ground.
	2	When using shielded, field circuit wires, do not ground the shield at both ends of the circuit (for example, the module and the field device).
	3	Single point grounding should be used where possible.
	4	 Priority for shield grounding: 1. Field side device case, if metal 2. Earth ground, as close to the field side device or module as possible 3. From shield to frame

Installation Guidelines—Modicon Quantum 800 Series I/O Modules with Unity

Installing an 800 The following table provides the steps involved, to install an 800 Series I/O Module: Series I/O Module

Step	Action
1	Remove module from its shipping box.
2	Check for damage. If damaged, contact your salesman or distributor for correct procedure.
3	Ensure power to housing is OFF.
4	Designate the housing slot for this module.
5	Locate required connector assembly. (Modicon Part number AS-8534-000 or AS-8535-000). This assembly consists of one or two 20-pin connectors. Note: Remove the keying tabs on the connector prior to installing the module.
6	Remove old duct. Remove only if a different connector/cabling duct assembly is already present in the designated housing slot.
7	(Optional Step) If there is a module to the immediate left of the slot designated for the new module's installation, temporarily remove it.

Connecting an Step Action Element 800 Series I/O Module

Step	Action						
1	Field Connection						
	Connect field side wiring to proper pins on the field connector.						
	Terminals accept either two 14-AWG size wires or one 12-AWG size wire per point.						
	Note:						
	1. All low current input modules are susceptible to fretting (wear) corrosion of field wiring connectors; these						
	modules include analog, D/A, A/D, TTL. Muxs, etc. (B873, B875, B846, etc.).						
	2. Schneider Electric recommends applying NYOGEL 759G lubricant to the connector to prevent fretting.						
	Modicon part number is 99-C759-x00.						
	3. When making connections to this module, electrical equipment should be serviced only by qualified personnel.						
	4. If you are using stranded wire, ensure that loose or projecting strands do not short circuit or ground the other terminals.						
	5. Schneider Electric recommends that you use solid wire.						
	6. When performing this step, refer to the appropriate chapter in the manual of the 800 Series module you are installing for the appropriate connector type.						
2	Re-install any module temporarily removed.						
	Note: When performing this step, refer to Appendix A for illustrations of optional key pin patterns for the 800						
	Series module you are installing. Appendix A contains key pin patterns for all 800 series I/O modules.						
3	When using key pins ¹ , install them above and below the selected housing slot for this module.						
	1. Key pins are provided with housing shipment.						
	The following figure shows an optional mechanical keying system (Key Pin Location) used to match the module						
	type with a particular slot in the housing.						
	LOOKING AT FRONT OF HOUSING - OVER MODULE SLOT						
	ΟΡ						
	O When facing housing, place the knurled						
	end of the key pins into the holes indicated						
	by the "P." Use a 1/2" plastic head mallet or equivalent to drive the pin into the						
	housing approximately 1/4 of an inch.						
	NOTE : The keying system is optional.						
	0 0						
	I						

Step	Action
4	Insert module into housing. Firmly but carefully seat the edge connector in the backplane. Note: First time installation of a module may be tight.
5	Secure module to housing. Use captive slotted mounting screws at the top and bottom of the module's front panel.
6	After confirming all modules are properly installed, 1. apply applicable field power 2. re-apply power to the programmable controller
7	I/O Map the module.
8	Start the controller.
9	Confirm that the module's active light is illuminated.

Requirements—Modicon Quantum 800 Series I/O Modules with Unity

Requirements List

The following requirements should be followed for installations complying with the CE marking.

Requirement for	Description	
Power supply and I/O lines	All wiring for power supply and I/O lines must be in grounded steel conduits (EMT) or must use braided shielded cable. If shielded cable is used, the braid must have 80% or more shield coverage, and the outside diameter of the braid (without jacket) must be in the range of 0.189 0.237 in (4.8 6.0 mm).	
Cable shields	All cable shields must be grounded, using clips on the Grounding E (Modicon part number CER001). Shield is not terminated at module field connector.	
Grounding	Install braided earth ground to both grounding clip (or clips as required) backplane ground reference 	
Line filters	Use a 110/220 Vac Line Filter (Schaffner part number FN670-30/6). Install as shown in the AC power input figure.	

CE Installation—Modicon Quantum 800 Series I/O Modules with Unity

Remote Drop The following graphics show the correct CE installation for a remote drop. Example From Tap **BI/O** Cable 5 Ξ 2 4 Braided Shielded Cable Reference Ground 0 0 00 00 Point 1 ____ 3 To Earth Tie Wraps to Hold Cables in Grounding Clips Ground (Outputs Only) Typical CE Installation for a Remote Drop AC Power In Shield of Cable Brown AC Line (Brown) 5 Brown AC Neut (Blue) 25 (Blue) Neut I Line Filter GND W 4 (Brown) Hot (GRN/YEL) -N P U 0 Blue 4 Blue Г Case Tab Shield GND (Green/Yellow) Earth And Shield To Mounting Ground Screw Of Line Filter DC Power In^I Ň Area Of Detail ASP890300

Installation Parts List—Modicon Quantum 800 Series I/O Modules with Unity

Fast on Terminals: 0.25 in (6.4 mm)		Description	Instructions	
		FN670-3/06	Dimensions: Length: 3.4 in (85 mm) Width: 2.2 in (55 mm) Height: 1.6 in (40 mm) Mounting Holes: 0.2 in (5.3 mm) dia. 3 in (75 mm) centerline mounted Fast on Terminals:	Install next to the 984 CPU.
2	Modicon	CER001 or equivalent	Grounding Bar	All cable shields must be grounde NOTE: Not required if using steel conduit.
3			Flat Ground Braided Cable	
4	Oflex	35005 3 conductor 100cy Series	Shielded Cable maximum length: 30 in (760 mm)	The shield is terminated at the EMI Line Filter ar open at CPU end The third conductor is not used.
5	Oflex	35005 3 conductor 100cy Series	Shielded Cable	Terminate the shield at panel ground, at EMI Filter.

Manufacturers Part Numbers/ Instructions

Key Pin Assignments—Modicon Quantum 800 Series I/O Modules

Charts The key pin assignments chart is provided in the following tables.

AS-B803-008

AS-B803-008

●_●	●_○	ంం	ಂ_●	ಂ
 ంఀం	● ॅ ०	●ੱ●	ంॅ●	• č o
AS-B802-008	AS-B803-008	AS-B804-016	AS-B805-016	AS-B806-032
AS-B808-016	AS-B809-016	AS-B820-008	AS-B821-008 AS-B821-108	AS-B822-008*
AS-B824-016	AS-B825-016	AS-B826-032	AS-B827-032	AS-B875-011 AS-B875-012
AS-B840-008 AS-B840-108	AS-B841-008*	AS-B850-016*	AS-B842-008	AS-B852-016*
AS-B855-016	AS-B810-008	AS-B828-016	AS-B873-011	AS-B833-016
AS-B862-001	AS-B863-001	AS-B864-001	AS-B857-032*	AS-B851-016*
AS-B865-001	AS-B868-001	AS-B869-001	AS-B872-002	AS-B873-001
AS-B875-111	AS-B881-308	AS-B872-100	AS-B872-200*	AS-B875-200
AS-B819-232*	AS-B804-148	AS-B882-116		
	AS-B806-124			

NOTE:

•

Indicates keying pin locations.

*

Indicates these modules may be obsoleted or superseded. Please contact your local distributor for more NOTE: details.

	•_•	●_੦	၂ ၀ ၀	ಂ⊸	ಂ_●
	്റ്	●ੱ੦	●ॅ●	ం	●
	AS-B807-032	AS-B814-001 AS-B814-108	AS-B814-002	AS-B816-016	AS-B817-116
● ●0	AS-B823-008*	AS-B846-002	AS-B836-016	AS-B837-016	AS-B849-016
0_0 •	AS-B829-016 AS-B829-116	AS-B872-011	AS-B883-200	AS-B8883-211	AS-B817-216
	AS-B853-016	AS-B883-001	AS-B886-001	AS-B884-001	AS-B883-201
• • •	AS-B832-016	AS-B883-101 AS-B883-111	AS-B886-011	AS-B885-001 AS-B885-002	AS-B838-032
	AS-B846-001	AS-B881-001	AS-B882-239	AS-B984-100	AS-B885-100
	AS-B875-001 AS-B875-002	AS-B875-101 AS-B875-102	AS-B880-108	AS-B880-208	AS-B882-032
	AS-B863-032	AS-B881-508	AS-B881-408	AS-B863-132	AS-B875-114

The key pin assignments chart is provided in the following table.

NOTE: Indicates Keying pin locations.

NOTE: * Indicates these modules may be obsoleted or superseded. Please contact your local distributor for more details.

Quick Start Test—Modicon Quantum 800 Series I/O Modules with Unity

Running Quick	The fo	llowing table provides the steps for running a Quick Start Test:
Start Test	Step	Action
	1	Determine which channel and slot location are being used for this module.
2 3		Wire a field device to the appropriate terminals (refer to the individual wiring diagrams/ field connector drawings for that particular I/O module) on either the AS-8534-000 low density connector, or AS-8535-000 high density connector, (refer to the Specification section for your particular I/O module to determine which connector is required.)
		Stop the controller.
	4	Install the I/O module.
	5	I/O Map the module, at the desired discrete or register reference.
	6	Start the controller.
	7	Confirm that the modules active light is illuminated. (may require Step 8 wiring first).
	8	To turn an Input ON apply the required power to the appropriate terminals (refer to the individual wiring diagrams/field connector drawings for your particular I/O module), and confirm that the red I/O light is illuminated after turning I/O point ON.

Analog Module Specifications—Modicon Quantum 800 Series I/O Modules with Unity

Operating	Temperature	0 to 60 °C (32 to 140 °F)	
	Humidity	0 to 95% (noncondensing) at 60° C	
Storage	Temperature	-40 to 85°C (-40 to 185°F)	
	Humidity	0 to 95% (noncondensing) at 60° C	
Isolation	Field to System	2000 VAC steady state maximum at 60 Hz for one minute	
	Between Groups	2500 VDC for 60 seconds without breakdown Leakage current shall not exceed 1.5 mA	
Shock	Operating	+/-15 G peak, 11 ms, half-sine wave	
	Nonoperating	+/-15 G peak, 11 ms, half-sine wave	
Vibration	Operating	0.005" D.A. Sine from 10 to crossover frequency (57 to 62 Hz) 1.0 G from crossover frequency to 500 Hz	
	Nonoperating	0.029 G sq/Hz, 10-50 Hz rolloff at -8db/octive from 50 Hz to 500 Hz	
EMI	Per MIL-STD 461B.		
RFI	Per FCC Class A.		
Surge Withstand Capability	Per IEEE 472-1974 and ANSI C37.90A-1974		

Environmental

Specifications for the 800 Series I/O analog modules

Mechanical

Specifications for the 800 Series I/O analog modules.

Dimensions (W x H x D)	2.0 x 10.5 x 8.0 in. (50.8 x 266.7 x 203.2 mm.)	
Weight	2.4 lbs. (1.1 kg.)	
Space Required	1 I/O slot.	

See individual chapters for module specific Specifications.

Discrete Module Specifications—Modicon Quantum 800 Series I/O Modules with Unity

Operating	Temperature	0 to 60°C (32 to 140°F)		
	Humidity	0 to 95% (noncondensing) at 60°C		
Storage	Temperature	-40 to 85°C (32 to 140°F)		
	Humidity	0 to 95% (noncondensing) at 60°C		
Isolation	Field to System	2000 VAC steady state maximum at 60 Hz for 1 min.		
	Between Groups	2500 VDC for 60 s without breakdown. Leakage current shall not exceed 1.5 mA.		
Shock	Operating	15 G peak, 11 ms, half sine wave		
	Nonoperating	15 G peak, 11 ms, half sine wave		
Vibration	Operating 0.005 in D.A. Sine from 10 to crossover frequency (57– 1.0 G from crossover frequency to 50 Hz			
	Nonoperating	0.029 G sq/Hz, 10—50 Hz rolloff at -8dB/octave from 50—500 Hz		
EMI	MIL-STD 461B			
RFI	FCC Class A			
Surge Withstand Capability	IEEE 472-1974 and ANSI C37.90A-1974)			

Environmental

Specifications for the 800 Series I/O discrete modules.

Mechanical

Specifications for the 800 Series I/O discrete modules.

Dimensions (W x H x D)	2.0 x 10.5 x 8.0 in. (50.8 x 266.7 x 203.2 mm.)	
Weight	2.4 lbs. (1.1 kg.)	
Space Required	1 I/O slot	

800 Series RIO Modules

II

Introduction

This part provides an overview of the 800 Series RIO modules. The content describes the modules' features.		
	5	
Chapter	Chapter Name	Page
4	J890 & J892 RIO Interface Modules	55
5	P890 & P892 RIO Processors	75
6	ASP890300 RIO Processor	87
	describes This part Chapter 4 5	describes the modules' features. This part contains the following chapters: Chapter Chapter Name 4 J890 & J892 RIO Interface Modules 5 P890 & P892 RIO Processors

J890 & J892 RIO Interface Modules

4

At a Glance

Purpose	This chapter explains features and operation of the J890 & J892 Modules.	2 RIO Interface
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	J890 & J892 Overview	56
	J890 & J892 DIP Switch Settings for the Drop Address	57
	J892 DIP Switch Settings for ASCII Devices	60
	J890 & J892 Indications	63
	J890 & J892 Installation and Connection	66
	J890 & J892 Connectivity on an S908 RIO Network	69
	J890 & J892 RIO Interface Error Codes	71
	J892 ASCII Error Codes	72
	J890 & J892 Specifications	73

J890 & J892 Overview

Module Features A J890 or J892 module may be used to provide the drop interface between a 984 Programmable Controller and a remote drop of 800 Series I/O on an S908 Remote I/O (RIO) network. Both interface modules are available in two models - one with a single F connector for RIO cable connection and one with two F connectors. In addition, the J892 contains two half-duplex ports that will support ASCII input/output devices at the remote drop.

Module Table J89x Modules

Part number	RIO cable ports	ASCII ports
AS-J890-101	1	0
AS-J890-102	2	0
AS-J892-101	1	2
AS-J892-102	2	2

J890 & J892 DIP Switch Settings for the Drop Address

DIP Switch Location This J890/J892 Interface devices both have a set of DIP switches located on the back of the module. These switches are used to set a unique RIO network address for the remote drop where the interface will reside. The drop address must be set on the Interface module before it is installed in the I/O housing.

Interface Rear Rear view of J890 & J892 interface.

View

Switch Settings for Drop Address

The drop address DIP switch has eight positions

Note: If the Unity controller at the head end of the RIO network supports both a local I/O drop and remote I/O, then drop address # 1 is reserved for the local drop and the first remote drop is addressed as drop # 2. If the Unity controller does not support local I/O, the first remote drop is addressed as drop # 1. For a complete list of 984 controllers and their I/O support capabilities, refer to the Modicon Remote I/O System Planning and Installation Guide (890 USE 101 00).

Switch positions for drop addressing.

Switch assignment for drop addressing

Switches	Functions	
Positions 1 5	Drop address 1 - 32 set in the 1 direction (to the left)	
Positions 6 8	not used set in the 0 direction (to the right)	

Mapping Dip Switch Settings for Drop Address

Dip switch settings for the drop address

	Swit	Switches			
	1	2	3	4	5
Drop Address					
1	0	0	0	0	0
2	1	0	0	0	0
3	0	1	0	0	0
4	1	1	0	0	0
5	0	0	1	0	0
6	1	0	1	0	0
7	0	1	1	0	0
8	1	1	1	0	0
9	0	0	0	1	0
10	1	0	0	1	0
11	0	1	0	1	0
12	1	1	0	1	0
13	0	0	1	1	0
14	1	0	1	1	0
15	0	1	1	1	0
16	1	1	1	1	0
17	0	0	0	0	1
18	1	0	0	0	1
19	0	1	0	0	1
20	1	1	0	0	1
21	0	0	1	0	1
22	1	0	1	0	1
23	0	1	1	0	1
24	1	1	1	0	1
25	0	0	0	1	1
26	1	0	0	1	1
27	0	1	0	1	1
28	1	1	0	1	1
29	0	0	1	1	1
30	1	0	1	1	1
31	0	1	1	1	1
32	1	1	1	1	1

J892 DIP Switch Settings for ASCII Devices

DIP Switch Location J892 Interface devices have an additional set of DIP switches located at the back of the module for setting ASCI device addresses and ASCII communication parameters. If you want to support ASCII devices at this drop, the ASCII switch setting must be made before the module is installed in the I/O housing.

Switch Settings The drop address DIP switch has eight positions. Switch positions for ASCII device settings.

Switches 3 ... 6 are used to set ASCII device addresses on the RIO network. The remaining switches are used to specify ASCII communication parameters.

Switch Settings	Switch settings for ASCII communication			
for ASCII Communication	Switches	ASCII Communication Function		
	1	RS-232C handshaking for the bottom ASCII port 1 = Data terminal ready/hardware handshake 0 = XON/XOFF		
	2	RS-232C handshaking for the top ASCII port 1 = Data terminal ready 0 = XON/XOFF		
	3 6	Port address 1 - 32 Device addressing in pairs		
	7	Continuous confidence test mode* 1 = Local diagnostic (J892 will not communicate when set to 1 position (left)) 0 = On-line (Normal setting)		
	8	Not used, always set in the 0 position (right)		

Mapping Switch Settings for

ASCII Device Addresses

	Swi	Switches			
	3	4	5	6	
ASCII ports address					
1, 2	0	0	0	0	
3, 4	1	0	0	0	
5, 6	0	1	0	0	
7, 8	1	1	0	0	
9, 10	0	0	1	0	
11, 12	1	0	1	0	
13, 14	0	1	1	0	
15, 16	1	1	1	0	
17, 18	0	0	0	1	
19, 20	1	0	0	1	
21, 22	0	1	0	1	
23, 24	1	1	0	1	
25, 26	0	0	1	1	
27, 28	1	0	1	1	
29, 30	0	1	1	1	
31, 32	1	1	1	1	

Switch settings for ASCII device addresses

J890 & J892 Indications

Overview On the face of both the J890 and J892 RIO Interface modules are a set of LEDs that indicate the RIO processing status of the module and one or two BNC cable ports used to connect the drop to the RIO network.

J890 Front View AS-J890 Front View

The J892 has additional LEDs that indicate the ASCII device processing status at the drop and a pair of 25-pin, D-shell, female ports for connecting ASCII devices at the drop.

Note: The LED indicators on the front panels also provide diagnostic information. Various flash patterns indicate errors detected in the RIO interface and/or in the ASCII interface.

J892 Front View J892 Front View

J890 and J892 LED Status Indications for RIO Interface J890 and J892 LED Status Indications for RIO Interface.

Name	Color	Indication (when ON)
READY	Green	RIO interface board succesfully passed power-up test
COMM ACTIVE	Green	I/O data being received or sent
COMM ERROR	Red	Communications error between J890 / J892 and 984
OURBUS ERROR	Red	Detected communications error between J890 / J892 and I/O
CARRIER DETECT	Green	Processor sensed carrier signal

Note: The COMM ERROR LED for the RIO Interface is ON if only one port on a dual port interface is connected, indicating that no signals are present at the unconnected port. Communications with the 984 are not effected.

J892 LED Status Indications for ASCII Interface

J892 LED Status Indications for ASCII Interface

Name	Color	Indication (when ON)
READY	Green	ASCII board succesfully passed power-up test
COMM ACTIVE	Green	ASCII data being received or sent
COMM ERROR	Red	Detected communications error between J892 and ASCII device
INTERFACE ERROR	Red	Detected ASCII communications error in the J892

Note: The COMM ERROR LED for the RIO Interface is ON if only one port on a dual port interface is connected, indicating that no signals are present at the unconnected port. Communications with the 984 are not effected.

J890 & J892 Installation and Connection

J890/J892		The following table lists the steps for installing the J890/J892 Module:					
Module	Step	Action Turn off the power to the I/O housing.					
	2	If you are installing a J892, make sure that SW7 on the ASCII communications DIP switch pack is set to the 0 position (on-line).					
	3	Insert the Interface module in slots 2 and 3 of the primary housing (directly to the right of the power supply unit). Press the module firmly to ensure that it is seated properly. Position of a J890 interface module in a primary I/O housing. Primary Power J890 RIO Interface 800 Series I/O					
		Supply (slot 1) (slots 2 and 3) (remaining slots)					

Connecting the	The following table lists the steps for connecting the J890/J892 to a Drop Cable:
J890/J892 to a	
Drop Cable	

Step	Action					
1	I/O drop malfunction Do not disconnect the drop cable while the system is running; disconnecting can cause other I/O drops to malfunction.					
2	 a: If the drop cable connection is a F connector nut, install it directly onto an RIO cable port using a 7/16 in open-end wrench-finger tightening is not sufficient (see Figure below (a)) b: If the drop cable connection is a BNC connector nut, use a Modicon 52-0752-000 F-to-BNC adapter to make the RIO drop connection (see Figure below (b)) 					
	90° Angle Adapter 90° Angle Adapter Adap					
	F-connection on Drop Cable					
	(a) BNC Connection on Drop Cable					
	Drop Cable (b)					

Step	Action				
3	If you are installing a J892 for ASCII device support, connect the ASCII device cables to the ASCII ports at this time.				
4	Apply power to the I/O housing. The I/O drop is ready for checkout; refer to Appendix B for diagnostic messages provided by the LEDs on the J890/J892 front panels. Note: For a complete discussion of planning and installing an RIO drop, refer to the Modicon Remote				
	I/O System Planning Guide (GM-0984-RIO).				

J890 & J892 Connectivity on an S908 RIO Network

User Connections Any 984 Programmable Controller that supports the S908 RIO network can employ 800_Series I/O at any or all of its remote drops, and any remote drop of 800_Series I/O can use a J890 or J892 as the drop interface module.
The J890/J892 Interface modules are compatible with all 800 Series I/O modules used in a S908 RIO network and may support up to 1024 input and 1024 output bits in a drop (depending on the capability of the head-end controller).
A J890/J892 Interface is a 1.5 slot module designed to be installed in the two slots immediately to the right of the primary power supply in the primary housing of a drop. The Interface sends data to and receives data from the 800 Series I/O via the drop's backplane; it communicates with the RIO processing unit in the controller via the RIO cable system.
In addition to managing the I/O data flow within the drop and over the RIO network, a J890/J892 is also used to define the address of the drop on the RIO network. Each

a J890/J892 is also used to define the address of the drop on the RIO network. Each module is equipped with a set of DIP switches with which you can set a unique drop address. The J982 also provides a second set of DIP switches for specifying ASCII device addresses. The locations of the switch packs and their addressing scheme are defined in *P890 & P892 Switch Settings for the Drop Address, p. 80* and *J892 DIP Switch Settings for ASCII Devices, p. 60*.

J890/J892 Drop and Network Communications

J890 & J892 RIO Interface Error Codes

Introduction When power is applied to the I/O housing after the J890/J892 Interface module has been installed in the drop, the module performs a set of confidence tests on itself. If any faults are detected in the RIO processing portion of the module, the RIO LEDs on the front panel will display a flash pattern of error codes.

Error Codes J890/J892 I/O processor board test error codes

Failed Diagnostic	READY	COMM ACTIVE	COM ERROR	INTERFACE ERROR
Machine Dead	OFF	OFF	OFF	OFF
PROM Test	OFF	Flashing	OFF	OFF
RAM Test	OFF	OFF	Flashing	OFF
LAN Test	OFF	Flashing	Flashing	OFF
CPU Test	OFF	OFF	OFF	Flashing
OBM Test	OFF	Flashing	OFF	Flashing
Switch Test	OFF	OFF	Flashing	Flashing

The interface error (OBM) test may be caused by an I/O module that has shorted the I/O bus. All of the other diagnostic error codes indicate an internal failure in the remote I/O processing portion of the J890/J892 interface.

J892 ASCII Error Codes

Introduction Confidence tests can also be run on the J892 module to test the ASCII portion of the device. To establish the ASCII confidence test mode on the J892 board, set SW7 to 1 (to the left) on the eight-position DIP switch. This will run the loop test.

Error Codes J892 ASCII board test error codes

Failed Diagnostic	READY	COMM ACTIVE	COM ERROR	INTERFACE ERROR
Machine Dead	OFF	OFF	OFF	OFF
PROM Test	Flashing	OFF	OFF	OFF
RAM Test	OFF	Flashing	OFF	OFF
HDLC Digital	Flashing	Flashing	OFF	OFF
HDLC Analog	OFF	OFF	Flashing	OFF
Serial Port Low	Flashing	OFF	Flashing	OFF
Interrupt Low	OFF	Flashing	Flashing	OFF
Serial Port High	Flashing	Flashing	Flashing	OFF
Interrupt High	OFF	OFF	OFF	Flashing
Baud Rate Low	Flashing	OFF	OFF	Flashing
Baud Rate High	OFF	Flashing	OFF	Flashing
Switch Test	Flashing	Flashing	OFF	Flashing
Modem Disconnect	OFF	OFF	Flashing	Flashing
Modem DSR Error	Flashing	OFF	Flashing	Flashing

With the exception of the switch test, these diagnostic error codes indicate an internal failure in the ASCII processing portion of the J892 interface.

J890 & J892 Specifications

Introduction	The following tables give specifications for the J890 & J892 modules.					
Costumer Part Numbers	Costumer part numbers					
	Customer Part Number	Description				
	AS-J890_101	Contains one F connector RIO cable port, Supports linear and dual RIO cable topologies, No ASCII device support				
	AS-J890_102	Contains two F connector RIO cable ports, Supports a redundant RIO cable topology, No ASCII device support				
	AS-J892_101	Contains one F connector RIO cable port, Supports linear and dual RIO cable topologies, Two 25-pin female connectors for ASCII device support				
	AS-J892_102	Contains two F connector RIO cable ports, Supports a redundant RIO cable topology, Two 25-pin female connectors for ASCII device support				

Communications Communications

Rate	1.544 Mbits/s
Comm Link Time	< 1 ms for 256 I/O points
Drop Hold-Up Time	programmable from 0.3 s to 100 minimum (100 ms increments)

System Power Requirements

System Power Requirements

J890 Load	1.85 A at + 5 V
J892 Load	4.0 A at + 5 V

P890 & P892 RIO Processors

5

At a Glance

Purpose	This chapter explains features and operation of the P890 & P892 RIO Processors.						
What's in this	This chapter contains the following topics:						
Chapter?	Торіс	Page					
	P890 & P892 Overview	76					
	P890 & P892 Indicators	78					
	P890 & P892 Power Available	79					
	P890 & P892 Switch Settings for the Drop Address	80					
	P890 & P892 Installation	83					
	P890 & P892 Specifications	84					

P890 & P892 Overview

Description	The P890/P892 Remote I/O Processors provide a direct interface between 984 PC and 800 Series I/O. Both modules include an integrated power supply that supplies 3 amps of power to adjacent 800 series I/O modules. In addition, the P892 processor provides two half duplex ASCII ports. The P890/P892 processor is mounted directly into a primary 19- or 27-inch 800 Series I/O housing (H819/H827-209). The connection between the processor and the I/O modules is made through the housing backplane. The remote I/O system coaxial cabling provides the communications path between the P890/P892 processors are compatible with all Unity programmable controllers that support the S908 remote I/O system. The P890/P892 processors are compatible with all Unity programmable controllers that support the S908 remote I/O drops and I/O points per drop supported depends on the controller size. The P890/P892 processors support a single remote I/O cable configuration. Cable runs from the 984 Controller through taps that have drop cables to the P89X remote interfaces. The P890/P892 processor power supply supports two separate power sources, 115/230VAC and 24VDC. The AC power source is switch selectable between 115v and 230v settings. The top ON/OFF switch controls the AC power and the bottom ON/OFF switch controls the 24VDC can be used as a backup power source to the 115/230VAC. The single slot P890/P892 can provide a maximum of 3 amps to power 800 series I/O modules. For systems needing more power, expander power supplies should be inserted in the next I/O housing.
	moorted in the hort i/o housing.

Front, Bottom and Side View

P890 & P892 Indicators

Overview	The following table shows P890/P892 processor indicator lights and provides the name, color and indication when on. The I/O processor lights are on both processors. The ASCII error indicator is only on the P892 Processor.					
Indicator Lights	Indicator	lights	for I/O	processor P890 and P892.		
for P890 and P892	Name		Color	Indication (when ON)		
1002	Power OK		Green	All Voltages are OK.		
	Ready		Amber	I/O processor board successfully passed power-up tests.		
	Comm Active		Green	I/O comm active between P89X and 984.		
	Comm Error		Red	A communications error has been detected between the processor and the controller.		
	Ourbus Error		Red	A communications error has been detected between the processor and the I/O modules.		
Indicator Light	ASCII error indicator light					
ASCII (P892 only)	Name	Color	Indica	tion (when ON)		

Name	Color	Indication (when ON)				
ASCII	Red	An ASCII communications error has been detected at the processor.				
Error						

P890 & P892 Power Available

Power supplied for I/O use +5VIO @ 3Amp max* +4.3V @ 3Amp max*

-5V @ .25Amp

* The +5VIO and +4.3V combined total load current should not exceed 3 Amps. The P890/P892 processors provide a fast drop scan rate, less than 5 milliseconds for 256 I/O points. The communication link time to the RIO Head is less than 1 millisecond with up to five immediate retries.

P890 & P892 Switch Settings for the Drop Address

Overview Before installing the P890 or P892 processor, you must set the switches located on the bottom of the unit. The P890/P892 processor has one set of eight switches used to select drop/port address and ASCII communications handshake method.

P890/P892 Drop Address Switch Settings View of the Switches

Description of the Switches

Switches	Functions
For P890 &P892 1-6	drop/port address 1-32 binary form
For P890 ONLY 7-8	not used, set to left
For P892 ONLY 7 8	hand shaking for port 1 hand shaking for port 2 L = Data Terminal Ready/Data Set Ready R = Xon/Xoff

Note: You MUST go into the Traffic Cop software and set the ASCII port number to match your switch selection, noting the drop.

Note: Drop and port addresses are related. Switch settings for Drop #3 correspond to ASCII ports 5 and 6.

Drop AddressThe drop address is set by the setting switches one through six in the switchpack as
shown in the table.

Switcl	hes						
1	2	3	4	5	6		
						Drop Address	Port Number For P892 ONLY
L	L	L	L	L	L	1	1,2
R	L	L	L	L	L	2	3,4
L	R	L	L	L	L	3	5,6
R	R	L	L	L	L	4	7,8
L	L	R	L	L	L	5	9,10
R	L	R	L	L	L	6	11,12
L	R	R	L	L	L	7	13,14
R	R	R	L	L	L	8	15,16
L	L	L	R	L	L	9	17,18
R	L	L	R	L	L	10	19,20
L	R	L	R	L	L	11	21,22
R	R	L	R	L	L	12	23,24
L	L	R	R	L	L	13	25,26
R	L	R	R	L	L	14	27,28
L	R	R	R	L	L	15	29,30
R	R	R	R	L	L	16	31,32
L	L	L	L	R	L	17	N/A
R	L	L	L	R	L	18	N/A
L	R	L	L	R	L	19	N/A
R	R	L	L	R	L	20	N/A
L	L	R	L	R	L	21	N/A
R	L	R	L	R	L	22	N/A
L	R	R	L	R	L	23	N/A
R	R	R	L	R	L	24	N/A
L	L	L	R	R	L	25	N/A
R	L	L	R	R	L	26	N/A
L	R	L	R	R	L	27	N/A
R	R	L	R	R	L	28	N/A
L	L	R	R	R	L	29	N/A
R	L	R	R	R	L	30	N/A
L	R	R	R	R	L	31	N/A

Switches							
1	2	3	4	5	6		
						Drop Address	Port Number For P892 ONLY
R	R	R	R	R	L	32	N/A

Note: Drop addresses 1 to 16 can be used as RIO and ASCII. However, drop addresses 17 to 32 can ONLY be used as RIO.

9-Pin ASCII Ports Correct cable configuration is dependent upon the requirements of the unit attached to the ascii port.

Pin Number	Designation					
1	Chassis Ground (CG)					
2	Receive (RXD)					
3	Transmit (TXD)					
4	Data Terminal Ready (DTR)					
5	Signal Ground (SG)					
6	Data Set Ready (DSR)					
7	Request to Send (RTS)					
8	Clear to Send (CTS)					
9	No Connection (N.C.)					

Sample PinThe following graphic depicts one possible pin layout for a cable connecting a P892Layout for aASCII port and another device using hardwired flow control. Actual pin numbers may
vary from device to device.

P890	& P892	Installation
------	--------	--------------

Introduction	The following procedure describes how to install a P890 or P892 processor. The processor is installed in an H819/H827-209 800 Series I/O Housing in the left-most slot. Note: To ensure proper operation of this module, you must have one of the following revisions (or higher) of MODICON Traffic Cop software: P190 AS-T984-302 Version 2.01 Rev.J IBM AS-DIBM-902 Version 3.01 Rev.X If you do not have a tape or diskette with one of the above software levels, call MODICON Customer Service at 1-800-468-5342 and obtain the proper software.		
Procedure for Installation	How t	o Install a P890 or P892 processor Action	
	1	Set the address/handshake switch as shown in <i>P890/P892 Drop Address Switch Settings, p. 80.</i>	
	2	Ensure that the power supply switches are OFF and power to the housing is OFF. Also, set the 115/230 VAC switch based upon your power requirement. Do not insert the P890 or P892 processor if power is supplied to the unit.	
	3	Remove the plastic cover to connect the power cables, once they are in place replace the plastic cover.	
	4	Wire up the power cable for either AC (three pin plug) or DC (two pin plug) depending upon the application.	
	5	Connect remote I/O cable to the P890 or P892 F-connector.	
	Remove the ASCII port connector covers. Connect the ASCII device cable(s). For the P892 only.		
	Insert the P890/P892 into the H819/H827-209 housing in the left-most slot. Press firmly to ensure that the processor is seated properly in the housing.		
	8	Tighten the two captive screws located at the top and bottom of the processor.	
	9 Turn the power supply on. The I/O drop is ready for checkout.		

P890 & P892 Specifications

Topology	Тороlоду				
	Cabling	ng Single coaxial cable 75 ohm RG-6 type			
	Connector	F-Typ	e		
	L				
Communications	Communi	ations			
	Rate		1.544 MHZ	1.544 MHZ	
	Drop scan time		< 5 ms for 256 I/O points		
	Comm link	time	< 1 ms for 256 I/O points		
	Drop hold	up time	programmable from 300msec to 6553.6sec (100 msec	c increments)	
				_	
Power Supplied to I/O	Power Su	oplied to) I/O		
	+5VIO @	3Amp*			
	+4.3V @	3Amp*			
	-5V @	.25Amp			
	*The +5VIO and +4.3V combined can not exceed 3 Amps.				
Power					
Requirements	24VDC +/	24VDC +/- 15% @ 2Amps Max.			
AC Power Loss Hold up time	8.3 mSec				
RFI	Meets applicable FCC requirements for industrial equipment				
EMI					
	Radiated S	Susceptib	ility	MS 461B RS03	
	Conducted Susceptibility MS 461N CS02				
Surge Withstand	rge Withstand IEEE 472_1974, ANSI C37.90a				

Static Discharge 15kv to all exterior surfaces, connectors covered or terminated properly, mounted on grounded panel.

Environmental Operating Conditions Environmental Operating Conditions

Humidity	0 - 95% non-condensing
Temperature	0 - 60°C
Temperature Storage	- 40 / +80 degrees C
Shock	+/- 10G's, 11ms. 3pulses per axis
Vibration Sine 5Hz to 50 Hz @ .0005 in D.A. 30min/axis	
	50 Hz to 500 Hz @ .625G ² 30min/axis
Vibration Random	10Hz to 50 Hz @ .029G ² /HZ
	60 Hz to 300 Hz @ .029G ² -8db/octave
Altitude	10,000 ft max

Physical

Physical

-		
Dimensions	3.53.in x 10.46in. x 8.25in.	
$(W \times H \times D)$	(8.97cm x 26.59cm x 20.95cm)	
Diagnostics	Power-up confidence tests	
	Run time confidence tests	

ASP890300 RIO Processor

6

At a Glance

Purpose	This chapter explains the features and operation of the ASP890300 RIO			
What's in this	This chapter contains the following topics:			
Chapter?	Торіс	Page		
	ASP890300 General Description	88		
	Indicators	91		
	Power, Backplanes, I/O and Typical Configuration	92		
	Switch Settings	95		
	Diagnostics	99		
	Installation	102		
	Specifications	104		

ASP890300 General Description

Overview	The MODICON ASP890300 800 I/O Remote I/O processor with Power provides an interface between PLCs and 800 Series Remote I/O modules.Two half-duplex ASCII ports are available. The basic modes of operation are P890/P892/J890 replication (AS-P89X-000 and AS-J890-X0X) and J892 emulation (AS-J892-X0X). The ASP890300 Processor is compatible with all Schneider Electric controllers that support the S908/CRP-type Remote I/O networks and all 800 Series I/O modules. Remote I/O communication is accomplished over single or dual coaxial cable networks. The number of drops and points supported depends on the system PLC. Operating modes are rotary switch-selectable, and include single or dual RI/O cable. These, in part, eliminate improper Comm Error LED indications when operating with a single cable connecting the drop. Rotary switch selectable operating modes, plus two executive reflash options are: J890/P890 single or dual RI/O cable operation THU or ASCII reflash modes Executive software stored in flash memory may be updated through ASCII Port 1.
ASP890300 Compatibility	Those replacing the P89X processors will find the ASP890300 both power and backplane compatible. Some connector rewiring will be required. J890 or J892 processor replacement will require a backplane replacement. Depending on the number of I/O modules in the drop, a replacement may also include an additional power supply and rewiring.
	Note: Equipment replacement guidelines, including those for J810/J812 and 984 slot-mount controllers are described in Appendix A. Please review this material before performing an upgrade.
	The ASP890300 Processor is mounted into primary 10-, 19- or 27-inch 800 Series I/O backplanes. These provide connectivity between the processor and I/O modules.
Power	The processor is self-powered from either 115/230VAC or 24VDC sources. These power sources are independently switched ON/OFF on the front panel. The 115V/230VAC inputs are jumper-selectable on the power connector. Up to 7A of combined +5.0VDC and +4.3VDC load current is supplied by the processor to I/O in the primary backplane. No other power supplies may be used to augment the ASP890300. Power for I/O modules in secondary backplanes can be provided by auxiliary supplies interconnected with appropriate cables.

Indicators

LED Indicators The following table describes the LED Indicators.

LED Nomenclature	Color	Eurotion (Indication
LED Nomenclature	Color	Function/Indication
PWR OK	Green	Power voltages are good and within specified specifications.
READY	Green	All internal diagnostics have completed successfully and the unit is available for normal operation.
COMM ACTIVE	Green	Unit is successfully and actively communicating on the remote I/O network.
COMM ERROR A	Red	 Cable A is experiencing communications errors due to any of the following: broken cable poor or loose coaxial connection intermittent noise mode selector switch is in wrong position
COMM ERROR B	Red	 Cable B is experiencing communications errors due to any of the following: broken or missing cable poor or loose coaxial connection intermittent noise mode selector switch is in wrong position
ASCII ACTIVE	Green	ASCII port is active.
ASCII ERROR	Red	Unit is experiencing errors with ASCII communication port.
OURBUS ERROR	Red	 Unit is experiencing errors with a local I/O module, or: the entry in the traffic cop does not match the I/O module type; the I/O module is not present; or the I/O module is no longer operative.

Power, Backplanes, I/O and Typical Configuration

for I/O	+5V and +4.3V loads shall not exceed 7.0	A	
Power Supplied	The following table describes the power supplied for I/O use. The combination of the		

Voltage	Current
+5.0VDC	7.0A
+4.3VDC	6.0A
-5.0VDC	0.5A

AC Power Input ____ tor.

Connections

The following table describes the ASP890300 AC p	power connector.
--	------------------

Terminal	Nomenclature	Function
1	Ν	Neutral AC Line
2	L	Hot AC Line
3	G	Ground
4	Jumper inserted between 4 and 5 for 115V operation	
5		

DANGER	
HAZARDOUS VOLTAGE	
Disconnect all power before working on equipment.Verify correct terminal connections when wiring.	
Failure to follow this precaution will result in death, serious injury, or equipment damage.	

•	The following table describes the ASP890300 DC power connector.		
Connections	Terminal	Nomenclature	Function
	1	DC+	+24.0VDC
	2	DC-	Common

onnectors Part	Input	Part Number		
	AC	52-0378-000 (5-terminal)		
	DC	52-0380-000 (2-terminal)		
	Note:	The ASP890300 is shipped with these connectors installed.		
ompatible ackplanes	The following backplanes are compatible with the ASP890300.			
acripianes	Nome	Description		

 Name
 Description

 AS-H810-208*
 10", ASP890300 plus three I/O modules.

 AS-H810-209*
 10", ASP890300 plus three I/O modules.

 AS-H819-209
 19", ASP890300 plus six I/O modules.

 AS-H819-209
 19", ASP890300 plus six I/O modules.

 AS-H827-209
 27", ASP890300 plus ten I/O modules.

 *Repair/service exchange only
 *

Remote I/O	The following table describes ASP890300 remote I/O.			
	Compatibility	All S908 Commands and Responses		
	Cable Medium	Coax, Single or Redundant Options		
	Termination	75Ω Internal		
	Shield Grounding Method	Capacitor Coupled to Chassis Ground		
	Device Address	1-32		
Drop I/O	The following table descr	ibes ASP890300 drop I/O capacity.		
Capacity	Max Number of 800 Racks	5 Max: 1 Primary, 4 Secondary		
	Max Number of Inputs	1024 Points/64 Words		
	Max Number of Outputs	1024 Points/64 Words		
	Max I/O	2048 Points/128 Words		
	Drop Hold Up Time	300ms to 6553.6 seconds		
		10ms increments		
	Drop Scan Time	5ms for 256 I/O Points		
ASCII Port	The following table descr	ibes ASP890300 ASCII port capacity.		
Capacity	Total Number ASCII Ports per Drop		2	
	Total Number ASCII Drops	per System	16	
	Total Number ASCII Ports per System			

Switch Settings

Switch Label

The following graphic shows the switch label.

Mode Select Switch

The following table describes the ASP890300 mode select switch.

Rotary Switch	Label	Function
Position	Nomenclature	
0	No Operation	Not Used
1	P/J 890/Single	P89x/J89x Single Cable/ASCII Disabled
2	P/J 890/Dual	P89x/J89x Dual Cable/ASCII Disabled
3	P892/Single/ASCII	P892 Single Cable/ASCII Enabled Port Address Switch Disabled
4	P892/Dual/ASCII	P892 Dual Cable/ASCII Enabled Port Address Switch Disabled
5	J892/Single/ASCII	J892 Single Cable/ASCII Enabled Port Address Switch Enabled
6	J892/Dual/ASCII	J892 Dual Cable/ASCII Enabled Port Address Switch Enabled
7	Upgrade Exec FLASH RTU	Flash Update via Port 1 using RTU Mode parameters Drop Functionally Disabled
8	Upgrade Exec FLASH ASCII	Flash Update via Port 1 using ASCII Mode parameters Drop Functionally Disabled
9	No Operation	Not Used

- · Switch settings read only on power up
- Invalid switch position setting will be indicated by flashing Comm Error A and Comm Error B LEDs

Switches	Switch Type			Function	Numbered	Valid Setting
	10 Position Rotary		Ones	0 - 9	0 - 9	
	10 Position Rotar	ŷ		Tens	0 - 9	0 - 3
	 Switch setting Drop address Invalid address Error B LEDs 	s settings of 0 ss setting will I	or greater th			
P892 (Mode 3/4) ASCII Port	The following ta addressing dete					ASCII port
Addressing	Drop Address	ASCII Address	Drop Addr	ess ASCII	Address	
	1	1,2	9	17,18		
	2	3,4	10	19,20	19,20	
	3	5,6	11	21,22	21,22	
	4	7,8	12	23,24	23,24	
	5	9,10	13	25,26	,26	
	6	11,12	14	27,28	•	
	7	13,14	15	29,30)	
	8	15,16	16	31,32		
1892 Port ASCII Address	 ASCII port ro ASCII port ac table Drops 17 thro ASCII ports The following ta	ddresses are re bugh 32 can st ble describes t	ill be used for the	e drop addre or 800 I/O, b 300 ASCII p	ss and are b out cannot ha port address	ave associated
Switches	Switch Type	Function	Numbered	3		
	10 Position Rotary Ones 0 - 9 0 - 9 10 Position Rotary Ones 0 - 9 0 - 9					
	 10 Position Rotar Switch setting Switch valid f ASCII port action 	gs read only or for Modes 5/6	only	0 - 3 ater than 31	are invalid a	ddresses

J892 (Mode 5/6) ASCII Port Addressing

The following table describes the ASP890300's J892 (Mode 5/6) ASCII port addressing determined by the J892 port ASCII address switches.

Switch Setting	ASCII Port Address	Switch Setting	ASCII Address
1 or 2	1, 2	17 or 18	17, 18
3 or 4	3, 4	19 or 20	19, 20
5 or 6	5, 6	21 or 22	21, 22
7 or 8	7, 8	23 or 24	23, 24
9 or 10	9, 10	25 or 26	25, 26
11 or 12	11, 12	27 or 28	27, 28
13 or 14	13, 14	29 or 30	29, 30
15 or 16	15, 16	31 or 32	31, 32

- · Switch settings read only on power up
- ASCII port rotary address switches enabled in this mode
- ASCII port addresses of 0 and greater than 32 are invalid
- Invalid address setting will be indicated by flashing Comm Error A and Comm Error B LEDs

ASCII Port Handshake Switch

The following table describes the ASCII port handshake switch.

2 Position DIP Switch	Function	
Port 1	Data Terminal Ready	
FUILI	XON/XOFF	
Port 2	Data Terminal Ready	
Fold 2	XON/XOFF	

• Switch settings read only on power up

ASCII Port Interface Connector The following table describes the ASCII port interface connector.

Female 9 Pin D-Type Pin Number	Signal Name	Description
1		Not Used
2	RXD	Receive Data
3	TXD	Transmit Data
4	DTR	Data Terminal Ready
5	SGND	Signal Ground
6	DSR	Data Set Ready
7	RTS	Request to Send
8	CTS	Clear to Send
9		Not Used

	D-sub shell tied to chassis ground.					
ASCII Port	The following	The following table describes programmable ASCII port parameters.				
Parameters	Port Address	1-32				
	Baud Rate	50, 75, 110, 134, 150 9600, 19200	0, 300, 600, 1200, 1800,	2000, 2400, 3600, 4800, 7200,		
	Data Bits	5, 6, 7, 8				
	Parity	None, Odd, Even				
	Stop Bits	1 or 2				
ASCII Cable Distance Sample Pin Layout	The following ASP890300 numbers may ASCII PORT (DTR/D Name TXD RXD RTS CTS DSR SG	ASCII port and anot y vary between remo r (9-PIN)	ne possible pin layout her device using hard ote devices. REMOTE D	for a cable connecting a wired flow control. Actual pin DEVICE (25-PIN) (R/DSR) Name RXD TXD RTS CTS DTR SG DSR		

Diagnostics

Overview The ASP890300 performs two classes of confidence tests, power-up tests and runtime tests. The power-up tests are designed to detect problems within the board hardware before lighting the ready LED and going on-line to receive and hand off data. The run-time tests attempt to catch board hardware problems while the ASP890300 is handling data and will force the unit to go off line if errors are detected. Errors always cause the ASP890300 to flash appropriate LEDs and to turn off the ready LED. The only way of returning to normal operation from a fatal error is to power cycle the unit.

Confidence Tests

The following table describes actions performed by ASP890300 confidence tests.

Confidence Test	Action Performed	
Flash Checksum	Performs a checksum of the executive flash	
RAM Data Test	Verifies RAM data integrity	
RAM Address Test	Verifies RAM address integrity	
LAN Controller	Verifies LAN controller integrity	
OBM Test	Verifies OURBUS integrity	

Error Codes	Comm Active Flashes	Error Condition
	0	Power Down Interrupt
	1	Kernel Mode
	2	Not Used
	3	OBM Error
	4	Bad/Unexpected Interrupt
		LAN Chip Error
		Receive Abort Error
		Transmission Loop Time-out
		Transmission DMA Time-out
		Cable A Initialization Error
		Cable A DMA Xfer Error
		Cable B DMA Xfer Error
		Cable A Dump Data Error
		Cable A DMA Hung
		Cable B DMA Hung
		Cable A/B DRQ Hung
		Power Up LAN Error
		Cable B Initialization Error
	5	RAM Address Error
	6	RAM Data Error
	7	Exec Checksum Error
	8	Kernel Detected Error
	*	*Invalid Switch Setting

*Comm A/B Error LEDs flash together indicating an invalid switch setting. Examples: Invalid Loop Address, Invalid ASCII Port Address, Invalid Mode Setting. If an ASP890300 Remote I/O Processor exhibits any of the above flashing LED codes, follow the steps below.

lf	Then
an ASP890300 Remote I/O Processor stops operating and exhibits any of the flashing LED codes in the previous table,	cycle the processor power off and back on when it is safe to do so.
Comm Active is flashing in any of the following patterns: • one blink • seven blinks, or • eight blinks,	power cycle as above, then reflash the executive software.
neither of the above two actions restore normal operation,	replace the processor.

Installation					
Overview	The following procedure describes how to install an ASP890300 Processor. The processor is installed in an H810-208, H810-209, or H819/H827-209 800 Series I/O Housing in the left-most slot.				
Panel Software Requirements	The ASP890300 is a direct replacement for the ASP89X-000 processor. If you need to reconfigure a program, you may use any panel software that supports P89X processors. Select the P89X when traffic copping (I/O mapping).				
Installing a ASP890300	Use the following procedure to install an ASP890300 Processor. Step Action				
Processor	1	 Set the processor's Mode Select and Drop Address switches appropriately. For example, when replacing or emulating an AS-P890-000, AS-J890-001, or AS-J890-101, select Rotary Switch Position 1. 			
	2	 If using ASCII communications, set the processor's Port Address and Handshake switches as required. The Port 1/Port 2 Handshake and J892 Port ASCI Address switches are ignored if the Mode switch setting indicates ASCII is disabled. The Handshake switches are enabled if a switch position indicating ASCII Enabled is selected. The J892 Port ASCI switches are enabled as indicated. 			

DANGER

HAZARDOUS VOLTAGE

- Disconnect all power before working on equipment.
- Verify correct terminal connections when wiring.

Failure to follow this precaution will result in death, serious injury, or equipment damage.

Step	Action
3	Ensure the processor power source is switched off. Connect power wires to the appropriate AC or DC power connector terminals. If using AC power, for 115VAC operation, insert a jumper between terminals 4 and 5.
4	Connect the Remote I/O coaxial cables. Plug the power connectors into the processor. NOTE: Due to space restrictions (especially if the backplane is rack-mounted), drop cables must be RG-6 maximum. If using dual cables, the suggested method for cable connection is to attach the CHAN A cable first, then the CHAN B. When disconnecting, reverse the process, and remove the CHAN B cable first.
5	Insert the processor into the leftmost slot of the backplane. Press firmly to ensure it is properly seated in the backplane.
6	Tighten the captive screws at the top and bottom of the processor.
7	If used, plug the ASCII connectors into the processor.
8	For AC application, switch on "AC Pwr" For DC application, switch on "DC Pwr"
9	Apply power when the system is ready for processor operation. Make sure that the PWR OK and RDY LEDs are ON . If the system PLC is in RUN mode, make sure that the COMM ACTIVE LED is ON and the OURBUS ERROR LED is OFF .

Specifications

ASP890300 Specifications	The following table describes the specifications of the ASP890300.			
	Remote I/O Cabling	Coaxial cable 75 ohm		
	Remote I/O Connector	F-Туре		
	Remote I/O Communications Rate	1.544 MHz		
	I/O scan time	Less than 5ms for 256 I/O points		
	RIO comm link time	Less than 1ms for 256 I/O points		
	Drop hold up time	Programmable from 300ms to 6553.6 sec (in 100ms increments		
	Power supplied to I/O	+5VIO, 7A max*		
	(Short circuit proof)	+4.3V, 6A max*		
		-5V, 0.5A max		
		*The +5VIO and +4.3V combined cannot exceed 7A.		
	Power Requirements	115VAC, 1.1A, 50/60Hz		
		230VAC, 0.65A, 50/60Hz		
		24VDC, 4A		
	Inrush Current	30A @ 115VAC		
		25A @ 24VDC		
	Power Loss Hold up time	1 cycle AC loss		
		1ms @ 24VDC		

Power Supply

The following table describes ASP890300 power supply testing. (These requirements do not apply to the DC auxiliary input.)

Test	Reference	Spec. Limit
Isolation AC Line to Output		2500 VDC 1780VAC
Electro-Static Discharge	IEC 1000-4-2	4KV Conducted 8KV Air Gap
Radio Frequency Interference	IEC 1000-4-3	10V/m 27MHz-1GHz
Fast Transient	IEC 1000-4-4	2.0KV Comm mode 2.0KV Diff mode
Surge Withstand	IEC1000-4-5	2.0KV Comm Mode 1.0KV Diff Mode
Conducted RF Susceptibility	IEC1000-4-6	0.15KHz-80MHz 10Vrms
Damped Oscillatory Wave	IEEE472	2.5KV Diff Mode 2.5KV Comm Mode

RIO Interface

The following table describes ASP890300 RIO interface testing.

Test	Reference	Spec. Limit
Isolation Coax to Backplane		500 VDC
Electro-Static Discharge	IEC 1000-4-2	4KV Conducted
		8KV Air Gap
Radio Frequency Interference	IEC 1000-4-3	10V/m 27MHz-1GHz
Fast Transient	IEC 1000-4-4	1.0KV Cap Clamp
Surge Withstand	IEC1000-4-5	2.0KV to Shield
Conducted RF Susceptibility	IEC1000-4-6	0.15KHz-80MHz 10Vrms
Damped Oscillatory Wave	IEEE472	2.5KV to Shield

ASCII Ports The following table describes ASP890300 ASCII ports testing.

Test	Reference	Spec. Limit
Isolation		No Test
Electro-Static Discharge	IEC 1000-4-2	4KV Conducted 8KV Air Gap
Radio Frequency Interference	IEC 1000-4-3	10V/m 27MHz-1GHz
Fast Transient	IEC 1000-4-4	1.0KV Cap Clamp
Surge	IEC1000-4-5	2.0KV to Shield
Conducted RF Susceptibility	IEC1000-4-6	0.15KHz-80MHz 10Vrms
Damped Oscillatory Wave	IEEE472	No Test <30 meters

Electromagnetic The following table describes ASP890300 electromagnetic emissions testing. Emissions Test Reference Spec. Limit

Test	Reference	Spec. Limit	
Radiated	EN 55011	30-230MHz in situ at 10M 40dbuV	
Emission		230-1000MHz in situ at 10M 47dbuV	
Conducted	EN55011	0.155MHz 70(66) quasi peak (avg.) dbuV	
Emission		0.5MHz-30MHz 73(60) quasi peak (avg.) dbuV	

• Requires external filter

Temperature/ Vibration

The following table describes ASP890300 temperature and vibration testing.

Parameter	Reference	Specification Limits
Storage Temperature	IEC 68-2-14	-40 to +85°C
Operating Temperature	IEC 68-2-14	0 to 60°C Ambient
Humidity Non-Operating	IEC 68-2-3	95% RH at 60°C non-condensing
Humidity Operating	IEC 68-2-3	95% RH at 60°C non-condensing
Altitude	MIL-STD-810	15,000 feet
Vibration Operating	IEC-68-2-6	10-57Hz: 0.075mm Dual Axis
Shock Operating 3 shocks/axis	IEC 68-2-27	15g, 11ms
Free Fall Unpackaged	IEC 68-2-32	1m

Agency Approvals	The following table describes ASP890300 agency approvals.		
	Agency		
	UL 508		
	CSA 22.2-142		
	CE		

800 Series Analog I/O Modules

Introduction

At a Glance This part provides a detailed description of the 800 Series analog I/O modules. It includes technical data and wiring information for each module.

What's in this Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
7	B846-001 & B846-002 Input Multiplexers	111
8	B872-100 Analog Output	117
9	B872-200 Analog Output	135
10	B873-002 & B875-002 Analog Input	153
11	B873-012 & B875-012 Analog Input	169
12	B875–102 High Speed Analog Input	183
13	B875-111 & B877-111 Analog Input	213
14	B875–200 Configurable A/D Input	243

B846-001 & B846-002 Input Multiplexers

7

At a Glance The purpose of this chapter is to describe the features and functionality of the B846-Purpose 001 & B846-002 Input Multiplexers. What's in this This chapter contains the following topics: Chapter? Topic Page B846-001 & B846-002 Overview 112 B846-001 & B846-002 Field Connections 114 B846-001 & B846-002 Specifications 115 B846-001 Parameter Configuration 116

B846-001 & B846-002 Overview

Characteristics Both the B846-001 Voltage Analog Multiplexer (MUX) and the B846-002 Current Analog Multiplexer (MUX) input modules accept 16 analog signals and connect one multiplexed signal to the output terminals of the module. The value of a 16-bit discrete output (coil) or register assigned to the module determines which input signal is connected to the output.

The B846's receive a command from a PLC that tells the module which analog channel to connect to the output terminals. This communication is accomplished via an output register (4x), which is specified when traffic-copping the I/O system. The value of the output register dictates which channel is selected. Features

Module	Feature
B846-001	Multiplexes analog voltage signals (+/-10 V, +/-5V, 1-5 V)
	Accommodates all voltage levels up to +/- 10 V
B846-002	Multiplexes analog current signals (4-20 mA)
	Accommodates an input range of 4-20mA
B846-001 and	Compatible with B873 and B875 Analog Input Modules
B846-002	Communications ACTIVE indicator
	Module's handles permit easy installation and removal
	Channel indicators
	Available with built-in resistors for 4-20mA loop operation
	Detects communication failures
	Designed for harsh plan floor environments
	Remove module without disturbing rigid field wiring system
	Meets IEEE surge withstand capability tests
	Designed UL and CSA standards

Each channel of the B846 has a high reliability DPST reed relay. The module is updated with every scan of the PLC, and the switched output is stable within ten milliseconds. The relay contacts are guaranteed to respond within 10 mS including diagnostics.

Each individual input channel may be wired with available 250 Ohm precision resistors. Wiring allows continuous 4-20mA current loop operation when the B846 output is connected to a 1-5V analog input.

Indicators on the module's bezel identify the input channel being enabled by the controller. The sixteen input channels are numbered from 0 to 15.

All outputs shut OFF in the event of a communications failure. Shut-off occurs within 300 ms of the signal loss. The module's ACTIVE indicator will also shut OFF.

The B846 module can be inserted into any location in the 800 Series I/O structure. The module slides easily into the housing and does not interfere with any other module's operation. An optional mechanical keying system can be used to match the module type with a particular slot in the housing to ensure proper module replacement. User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The module's protective case shields the logic circuitry from any electrical interference and minimizes the possibility of any noise being coupled from the user side of the circuitry to adjacent modules. A ground is automatically established when the module is inserted into the housing. This low impedance earth ground originates from the housing's backplane.

B846-001 & B846-002 Field Connections

User Input Connections

User connections are made to a standard screw terminal strip; and the rigid wiring system permits module insertion or removal, without disturbing the wiring. Refer to the following figure for terminal numbering and input connections. Connector AS-8535-000

B846-001 & B846-002 Specifications

Specifications for B846 Input Multiplexers

The following table shows the specifications for the B846 Input Multiplexers.

Description		
B846-001		Voltage Input Multiplexer
B846-002		Current Input Multiplexer
Number of Input Points		16, potential isolated from each other
Address Capacity		1 register data out (Binary data type)
Ranges		(B846-001) 0-5V, 1-5V, +/- 10V (B846-002) 4-20 mA
Input Impedance		(B846-001) Equal to B873 or B875 (B846-002) 250 ohms
Relay Response Time		10 mS including diagnostics
Power Required		
	+5 VDC	65 mA
	+4.3 VDC	1 mA
	-5 VDC	0 mA
Update Time		
	B846 MUX only	3 mS
with B875		20 mS
	with B873	20 mS
Note: An over range cor over range channel, to u	•	8875 channel will add approximately 200 mS per ning channels.
Terminal Connector		AS-8535-000

B846-001 Parameter Configuration

Parameter and **Default Values**

Para

ame	ter Co	nfiguratio	on Wind	ow
-----	--------	------------	---------	----

ANALOG MUX		
Config		
Parameter Name	Value	
MAPPING	WORD (%MW-4X)	T
L OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	1	
OUTPUT TYPE	BINARY	▼
1 : 140 XBP 3 : B846		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%MW- 4X)	-	
Outputs Starting Address	1	-	
Outputs Ending Address	1	-	
Output Type	BINARY	BCD	

Mapping Parameter References

	984LL, Concept, ProWORX	Unity
Reference Type	Mapped as 1 register output 4x	Mapped as 1 word output %MWx
Output Type	BIN/BCD	BIN/BCD

B872-100 Analog Output

8

At a Glance

Purpose	The purpose of this chapter is to describe the features and functionality 100 Analog Output Module.		
What's in this	This chapter contains the following topics:		
Chapter?	Торіс	Page	
	B872-100, Analog Output	118	
	B872-100 Data Value to Output Conversion	119	
	B872-100 Field Connections	122	
	B872-100 - Setting Module DIP-Switch	124	
	Calibration	126	
	B872-100 Specifications	131	
	B872-100 Parameter Configuration	133	

B872-100, Analog Output

Characteristics The B872-100 4-Channel Analog (D/A) Output Module converts numerical data ranging from 0000 to 4095 into current ranging from 4 to 20 mA (12-bit resolution). The module is designed to allow you to control the state of each output channel when the programmable controller is reset or stopped. The output of the channel can either remain at the last value (HOLD) or go to 0.0 mA (return to default: zero: RTZ). You can select this option for each of the four isolated outputs using a four-position DIP switch. A switch is associated with each output (switch 1 for output 1, etc.). The HOLD or RTZ function is selected by you to meet your specific application. The RTZ function allows you to bring the outputs to zero as a safety feature. The HOLD function allows you to maintain the last valid output value after the loss of OURBUS communication.

Note: Module Output Alert RTZ disables the output of the module so that output current goes to zero, not to zero scale (4 mA). Monitor voltage goes below 1V to indicate an output current loss of less than 4 mA.

The module has four isolated analog outputs, and is capable of updates to all four channels every 1 mS. The 12-bit resolution and the absolute accuracy of +/-0.1% at 25 °C provides precise control of your application.

The following figure shows the simplified schematic of the B872-100 module.

ISOLATION BARRIER

B872-100 Data Value to Output Conversion

Data Value toThe B872 accepts data values ranging from 0000 to 4095 and converts themOutputinto output currents of 4 to 20 mA. The output current is directly proportional to theConversiondata value plus 4 mA. Refer to the figure below for a data value to outputChartconversion chart.

 Determining
 To determine either the data value or the output current, use the following calculations:

 Output Current
 To solve for output current:

 Current = (Data Value / 256) + 4

 For example:

Current = (3162 / 256) + 4 Current = (12.35156) + 4 Current = 16.35156 Current = 16.352

To solve for data value: Data Value = (Current - 4) x 256

For example:

Data Value = (10.402 - 4) x 256 Data Value = (6.402) x 256 Data Value = 1638.912 Data Value = 1639

Note: Data values larger than 4095 will result in currents less than 20 mA. Refer to the in this chapter. The equations above are valid for data values of 0-4095 only. The module can output values in the range of 4096-8191 in a offset scale. If you use this offset range, be sure to subtract 4096 from the calculations provided above.*Trim-Pots Location and Voltmeter Connections, p. 127*

B872-100 Field Connections

UserUser connections are made to a standard screw terminal strip, and the rigid wiring
system permits module insertion or removal, without disturbing the wiring.

60

67

68

69

40

NO CONNECTION

NO CONNECTION

NO CONNECTION

INTERNAL FRAME GND

INTERNAL FRAME GND

FIELD DEVICES MAY BE LOCATED IN EITHER SINK OR SOURCE LEADS AS SHOWI
 VM IS AN OPTIONAL VOLTMETER THAT READS A VOLTAGE PROPORTIONAL TO

(1) CURRENT SOURC-

B872-100 - Setting Module DIP-Switch

Switch location and position	The four position DIP-switch is located on the rear of the module. This switch controls the state of each channel when the system is reset or stopped. The output to the channel can either remain at the last value (Hold) or go to 0.0 mA Return-To-Zero (RTZ). Set the switch for either hold or RTZ prior to installation of the module. Each of the four switches control the mode of operation for its associated output (i.e., switch 1 for output 1, etc.).
Switch Settings	The following figure presents DIP switch settings for the B872-100 module. Also,

refer to the label located on the left side of the module itself.

4- POSITION DIP- SWITCHES

 SWITCHES
 FUNCTIONS

 1,2,3,4- Channel
 STATE OF OUTPUT WHEN PC RESETS OR STOPS

FOR RTZ:

SW=L

FOR HOLD: SW=R

Set the switch to the left to select return-to-zero or to the right to select hold (viewing the rear of the module when held vertically). Channels are set independently.

Note: The output state after power-up initialization is dependent on the position of DIP-switch. Open circuit in the following table results in current 0 mA.

The following table represents the Relationship Between Power-up and DIP-Switch Settings.

Possible Event During Power-up	Switch=RTZ	Switch=HOLD
At Power-up	Open Circuit	Open Circuit
After Receiving Valid Data	Data	Data
PC Stop (After Run)	Open Circuit	Last Data
Loss of +5V	Open Circuit	Open Circuit
Loss of +4.3VIO	Open Circuit	Last Data
Loss of +5V & +4.3VIO	Open Circuit	Open Circuit

Calibration			
Calibration Intervals	The Analog Output module is calibrated at the factory prior to shipment. To ensure the module's accuracy you should calibrate the trim-pots for each output regularly. Calibration is recommended at 12 month intervals for operation between 25-45 °C and at 6 month intervals between 0-60 °C.		
Calibration Tools	 The following tools are needed to calibrate an Analog Output module: 1) A programming panel 2) A precision voltmeter, with an accuracy of +/-0.0001 volts on a 10 volt scale 3) A 1/4 inch Phillips screwdriver 4) A 1/8 inch standard screwdriver 		
Calibration Procedure (Method 1)	being requir (Meth Voltm circuit Diagr	ake the adjustments, a load and loop supply must be connected to the channel calibrated. There are two ways to make the adjustments. One procedure res a load and loop supply to be assembled using voltage and resistance od 1). Refer to the Calibration Voltage/Resistance Procedure and the eter Connections Diagram. The second procedure uses the existing field side t (Method 2). Refer to the Calibration Procedure, the Voltmeter Connections am, and the Voltage/Resistance Chart. The following table the Calibration ge/Resistance Procedure (Method 1).	
	Step	Action	
	1	Use a close tolerance 250 ohm resistor (+/-0.01%) and a voltage supply of between 12 and 35 VDC. The voltage readings will be taken across the resistor. Connect as indicated in the upper part of the Voltmeter Connections diagram.	
	2	Remove the two screws and the label located on the front panel of the Analog Output module. This allows you access to the trim-pots. There are two trim-pots per output. The first two trim-pots are for output number one, the second set is for output two, etc. Refer to the figure below for the Location of Trim Pots.	
	3	Open the Analog Output module handle to expose the connectors and terminals.	
	4	Load the data value of 0000 into the output register for the channel under test.	
	5	Adjust the top (4 mA calibrate) trim-pot of the set for a voltage of +1.0000, +/-0.002 volts. This calibrates to +/-0.05% of full scale.	
	6	Manually program a data value of 4095 into the output register for channel one.	
	7	Adjust the bottom (20 mA calibrate) trim-pot of the set for a voltage reading of +4.9990, +/-0.002 volts. This calibrates to +/-0.05% of full scale.	
	8	Return to step 4 and repeat steps 4-8 until module is within tolerance.	
	9	Move connections to next channel to calibrate, and repeat steps 4 through 8 for each output channel.	
	10	After the calibration procedure is complete, disconnect the voltmeter, return connections to their original state, close module handle, and replace front label that covers the trim-pots. Pot locking paint, and other substances are not required.	

The following figure shows the location of the Trim-Pots on the B872 Module.

The following figure is the Voltmeter Connections diagram for the B872-100 Module.

Calibration Procedure (Method 2)

The following table gives the Calibration Procedure (Method 2) for the B872-100 Module:

Step	Action
1	Connect loop supply and load resistor (if any) as indicated in the lower part of the Voltmeter Connections Diagram. Verify that resistor and loop supply are within limits as defined by the Voltage Resistance Chart.
2	Connect voltmeter to monitor terminals as indicated in the lower part of the Voltmeter Connections Diagram.
3	Load the data value of 0000 into the output register for the channel under test.
4	Adjust the top (4 mA calibrate) trim-pot of the set for a voltage of +1.0000, +/-0.002 volts. This calibrates to +/-0.05% of full scale.
5	Manually program a data value of 4095 into the output register for channel one.
6	Adjust the bottom (20 mA calibrate) trim-pot of the set for a voltage reading of +4.9990, +/-0.002 volts. This calibrates to +/-0.05% of full scale.
7	Return to step 3 and repeat steps 3-6 until module is within tolerance.
8	Move connections to next channel to calibrate, and repeat steps 3 through 7 for each output channel.

B872-100 Specifications

B872-100 The following Specifications	table gives the specifications for the B872-100 Module.		
Description	Analog output D/A; 4 - 20 mA		
Number of Points	4		
Operating Range	4 - 20 mA		
Maximum Loop Supply Voltage	60 VDC		
Allowable Resistance Range*			
Minimum	Rmin = VLoop** - 30V 0.02A		
and Maximum	Rmax = VLoop** - 7V 0.02A		
*Resistance is the sum of all compone	nts, including wiring, in the field side circuit.		
**VLoop equals the voltage of the loop resistance is 0 Ohms. Refer to the Ca	supply (not to exceed 60VDC). If voltage is <30VDC, then the minimum loop libration Procedure (Method 2), p. 129		
Voltage Drop @ 20 mA			
Minimum Maximum	7 VDC 30 VDC		
Response Time to Within +/_0.1% of Full Range	35 mS, all four channels		
Valid Data Values	0 thru 4095, or offset 4096-8191		
Resolution	1 part in 4096 counts		
Monitor Output Voltage			
Range	1 to 5 VDC		
Min Load	1 Megohm		
Impedance	470 ohms, typical		
Accuracy***			
Output Errors @ 25 °C (77 °F)			
Overall	+/-0.1% @ 25 °C absolute		
Nonlinearity	+/-0.024%		
Differential Nonlinearity	+/-0.036%		
*** All percentages are of full range.			
Output Isolation			
Output to OURBUS	1500 VAC or 2500 VDC for 1 minute 500 VAC or 500 VDC continuous operation		

Channel to Channel	1500 VAC or 2500 VDC for 1 minute	
	500 VAC or 500 VDC continuous operation	
Conversion		
Resolution	12-bits (1 part in 4096	
Update Time	The module can accept new data every 1 mS for a 4 channel update)	
Settling Time	Within +/-0.1%, < 350mS	
Linearity	0 to 60 °C, +/- 1 LSB maximum	
Differential Nonlinearity	0 to 60 °C, +/- 1.5 LSB maximum	
Load Inductance	1 Henry max, with no external diode suppression	
Power Required		
+5 V	475 mA	
+4.3 V	5 mA	
-5 V	0 mA	
Terminal Connector	AS-8535-000	

B872-100 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

ANALG 4 CH OUT		
Config		
Parameter Name	Value	
MAPPING	WORD (%MW-4X)	
OUTPUTS STARTING ADDRESS	2	
OUTPUTS ENDING ADDRESS	5	
•OUTPUT TYPE	BINARY 🔻	
1 : 140 XBP 3 : B872		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available	Description
Mapping	WORD (%MW-4X)	-	
Outputs Starting Address	2	-	
Outputs Ending Address	5	-	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 4 registers output 4x	Mapped as 4 words output %MWx
Output Type	BIN/BCD	BIN/BCD

B872-200 Analog Output

9

At a Glance

Purpose	The purpose of this chapter is to describe the features and functionality of the B872 200 Analog Output Module.			
What's in this	This chapter contains the following topics:			
Chapter?	Торіс	Page		
	B872-200 Overview	136		
	B872-200 Data Value to Output Conversion	138		
	B872-200 Field Connections	142		
	B872-200 - Setting Module Jumpers	144		
	B872-200 - Setting Module DIP-Switch	145		
	B872-200 Calibration	147		
	B872-200 Specifications	151		
	B872-200 Parameter Configuration	152		

B872-200 Overview

Characteristics The B872-200 4-Channel Analog (D/A) Output Module converts numerical data ranging from 0000 to 4095 into output voltage ranges (12-bit resolution). The Analog Output module allows you to drive a wide array of field devices requiring different voltages based upon your unique application. You can select from four available output voltage ranges. The ranges, which are 0 to 5V, 0 to 10V, -5 to 5V. and -10 to 10V, are selected by means of four pairs of jumpers, one pair per channel. You can operate multiple ranges simultaneously. The module is designed to allow you to control the state of each output channel when the programmable controller is reset or stopped. The output of the channel can either remain at the last value (HOLD) or go to 0.0 mV i.e., return-to-zero (RTZ). You can select this option for each of the four isolated outputs using a four-position DIP switch. A switch is associated with each output (switch 1 for output 1, etc.). The HOLD or RTZ function is selected by you to meet your specific application. The RTZ function allows you to bring the outputs to zero as a safety feature. The HOLD function allows you to maintain the last valid output value after the loss of Ourbus communication

> **Note:** Operative Interruption Hazard RTZ disables the output of the module so that output voltage goes to zero, independent of range selected.

The module has four isolated analog outputs and is capable of updates to all four channels every 1 ms. The 12-bit resolution and the absolute accuracy of +0.1% at 255 C provides precise control of your application. Refer to the figure below for the simplified schematic of the module.

The following figure is the simplified schematic diagram, for the B872-200 Module.

B872-200 Data Value to Output Conversion

Data ValueThe B872 accepts data values ranging from 0000 to 4095 and converts them into
output voltages for all four ranges. The output voltage is directly proportional to the
data value. Refer to the figure below for a data value to output conversion chart.
The figure below is a Data Value to Output Conversion Chart, for the
B872-200 Module.

Sample Calculations for determining voltage reading or data value for 0 to 5V or 0 to Calculations 10V Ranges: To solve for voltage reading: Total Voltage Span* x Data Value Voltage Output = 4096 For example: 5 x 1024 Voltage Output = -4096 Voltage Output = 1.250 VDC To solve for data value: Output Volts x 4096 Data Value = Total Volts* For example: 3.1104 x 4096 Data Value = 5 Data Value = 2548 Calculations for determining voltage reading or data value for -5 to 5V or -10 to 10V Ranges: To solve for voltage output: Total Volts* x Data Value + Offset Voltage** Voltage Output = 4096 For example: $10 \times 1024 + (-5)$ Voltage Output = 4096 Voltage Output = -2.500 VDC To solve for data value: (Voltage Output - Offset Voltage**) x 4096 Data Value = Total Volts* For example: (1.2183 - (-5)) x 4096 Data Value = 10 Data Value = 2547 *Total Volts Span = Voltage sum from lowest to highest voltage in range is selected. Examples: -100 to 10V = 20V -5 to 5V = 10V

**Offset Voltage = The lower number of the range is selected. Examples: -5 to 5V = -5V -10 to 10V = -10V

B872-200 Field Connections

User User connections are made to a standard screw terminal strip and the rigid wiring system permits module insertion or removal without disturbing the wiring. Terminal numbering and their corresponding output functions are presented in the figure below.

B872-200 - Setting Module Jumpers

Location and The jumpers are located on the left side of the module (look for four access holes). Settinas The holes allow access to the four pairs of jumpers which are used to select an output voltage range for the associated channel. Set the desired voltage range for 0 to 5V, 0 to 10V, -5 to 5V, or -10 to 10V prior to installation. Refer to the figure below for the jumper settings. Also refer to the left side of the module itself. The module is shipped set for 0 to 10V. The following figure gives the jumper settings for the B872-200 Module: OUTPUT VOLTAGE JUMPER SETTINGS RANGES 00 0 to +10v 00 00 -10 to +10v 00 0 0 ← PIN #1 00 0 to +5v 00 0 0 ← PIN #1 00 00 Пo

004

B872-200 - Setting Module DIP-Switch

4-Position DIP-Switch The four position DIP-switch is located on the rear of the module. This switch controls the state of each channel when the system is reset or stopped. The output to the channel can either remain at the last value (Hold) or go to 0.0 mA Return-To-Zero (RTZ).

Set the switch for either hold or RTZ prior to installation of the module. Each of the four switches control the mode of operation for its associated output (i.e., switch 1 for output 1, etc.). Refer to the figure below for switch settings. Also, refer to the label located on the left side of the module itself.

The following figure gives DIP-Switch Settings for the B872-200 Module.

4-POSITION DIP-SWITCH

TOP OF MODULE

SWITCHES

1,2,3,4-Channel

FUNCTIONS

STATE OF OUTPUT WHEN PC RESETS OR STOPS

FOR RTZ:

SW=L

FOR HOLD: SW=R

Set the switch to the left to select return-to-zero or to the right to select hold (viewing the rear of the module when held vertically). Channels are set independently.

Note: The output state after power-up initialization is dependent on the position of DIP-switch. Open circuit in the following table results in current 0 mA.

Possible Event During Power-up	Switch=RTZ	Switch=HOLD
At Power-up	0Volts*	0Volts*
After Receiving Valid Data	Data	Data
PC Stop (After Run)	0Volts*	Last Data
Loss of +5V	0Volts*	0Volts*
Loss of +4.3VIO	0Volts*	Last Data
Loss of +5V & +4.3VIO	0Volts*	0Volts*
*Active circuits of module are disconnected from the output are connected to an internal 100 Ohm resistor.	terminals, the c	output terminals

The following table shows the Relationship Between Power-up & DIP-Switch Settings.

Principle	the mo Calibr	nalog Output Module is calibrated at the factory prior to shipment. To ensure odule's accuracy, you should calibrate the trim-pots for each output regularly. ation is recommended at 12 month intervals for operation between 25-45 °C, 6 month intervals between 0-60 °C.
Required Tools	1) A p 2) A p 3) A 1	ollowing tools are needed to calibrate an Analog Output Module: rogramming panel recision voltmeter, with an accuracy of +/-0.0001 volts on a 10 volt scale /4 inch Phillips screwdriver /8 inch standard screwdriver
Calibration Procedure	The fo	llowing table shows the steps to calibrate the B872-200 Module:
Procedure	Step	Action
	1	Remove the two screws and the label located on the front panel of the Analog Output module. This allows you access to the trim-pots. There is one trim-pot per output. The first trim-pot is for output number one, the second set is for output two, etc. The trim-pots adjusts the range's total magnitude (full scale). Refer to the figure below. Note The 0.1% tolerance is the maximum FSR accuracy achievable thru calibration for any volt range. Calibrating any range to the 0.1% tolerance throws the other slightly off; i.e., tolerances for the remaining ranges available to that channel cannot be assumed better than +/- 0.25% FSR.
	2	Open the Analog Output module handle to expose the connectors and terminals.
	3	Connect the voltmeter minus lead (-) to the channel 1 (Analog Common CH1) and the plus lead (+) to the channel 1 (Analog Output CH1) terminal. Refer to the Voltmeter Connections Diagram below. Note Field wiring may remain connected during calibration.
	4	With the desired voltage range already selected. Manually program a data value of 4095 into the output register for channel two. Compare channel output voltage with anticipated voltmeter reading given in the table below.
	5	Adjust the (full scale calibrate) trim-pot for corresponding channel to get desired voltmeter reading.
	6	Repeat steps 3 through 5 for remaining channels.
	7	After the calibration procedure is complete, disconnect the voltmeter, return all connections to their original state, close the module handle, and replace the front label that covers the trim-pots. END OF PROCEDURE

Voltmeter Connections

The following figure is the Voltmeter Connections Diagram for the B872-200 Module.

0 to 5V

0 to 10V

Data Value to	The following table gives Data Value to Output Channel, for the B872-200 Module.			
Output Channel	Selected Voltage Range	Data Value	Voltmeter Reading	
	-5 to 5V	4095	4.9976	
	-10 to 10V	4095	9.99951	

4095

4095

4.9988

9.9976

B872-200 Specifications

B872-200 Specifications

The following table gives the Specifications for the B872-200 Module:

Description	Analog output, D/A
Number of Points	4
Operating Range Voltage	0 - 5 VDC, 0 - 10 VDC, -5 to 5 VDC, -10 to 10 VDC; selectable per channel
Maximum Output Current	10 mA
Minimum Load	0-5V= 500Ω 0-10V= 1kΩ -5to+5V= 500Ω -10to+10V=1kΩ
Response Time to Within +/ _0.1% of Full Range	35 mS, all four channels
Valid Data Values	0 thru 4095
Resolution	1 part in 4096 counts
Accuracy*** Output Errors @ 25 °C (77 °F) Overall Nonlinearity Differential Nonlinearity *** All percentages are of full range.	+/-0.1% @ 25 °C absolute +/-0.024% +/-0.036%
Output Isolation Output to OURBUS Channel to Channel	1500 VAC or 2500 VDC for 1 minute 500 VAC or 500 VDC continuous operation 1500 VAC or 2500 VDC for 1 minute 500 VAC or 500 VDC continuous operation
Conversion Resolution Update Time Settling Time Linearity Differential Nonlinearity Crosstalk	12-bits (1 part in 4096) The module can accept new data every 1 mS for a 4 channel update Within +/-0.1%, < 350mS 0 to 60 °C, +/- 1 LSB maximum 0 to 60 °C, +/- 1.5 LSB maximum -92 dB
Load Inductance	1 Henry max, with no external diode suppression
Power Required +5 V +4.3 V -5 V	750 mA 5 mA 0 mA
Terminal Connector	AS-8535-000

B872-200 Parameter Configuration

Parameter and **Default Values**

Parameter Configuration Window

ANALG 4 CH OUT	
Config	
Parameter Name	Value
r MAPPING	WORD (%MW-4X)
OUTPUTS STARTING ADDRESS	2
OUTPUTS ENDING ADDRESS	5
• - • OUTPUT TYPE	BINARY
1 : 140 XBF 3 : B872	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%MW-4X)	-	
Outputs Starting Address	2	-	
Outputs Ending Address	5	-	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 4 registers output 4x	Mapped as 4 words output %MWx
Output Type	BIN/BCD	BIN/BCD

B873-002 & B875-002 Analog Input

10

At a Glance

Purpose	The purpose of this chapter is to describe the B873-002 and B875-002 Analog Inpu Modules.			
What's in this	This chapter contains the following topics:			
Chapter?	Торіс	Page		
	B873-002 & B875-002 Overview	154		
	B873-002 & B875-002 Switch Settings and Indicators	155		
	B873-002 & B875-002 Installation	156		
	B873-002 & B875-002 Calibration	159		
	B873-002 & B875-002 Throughput Rate	163		
	B873-002 & B875-002 Field Connections	164		
	B873-002 & B875-002 Specifications	166		
	B873-002 Parameter Configuration	167		
	B875-002 Parameter Configuration	168		

B873-002 & B875-002 Overview

B873-002 & The B873-002 and B875-002 are analog input modules that can be used with 984 B875-002 Programmable Controllers. The only difference between the two modules is that the Modules B873-002 has four input channels and the B875-002 has eight input channels. The module can be set to produce a data value in the Standard Range (0000 to 4096) or the Elevated Range (4095 to 8192). It accepts inputs of 1.0 to 5.0 volts or 4 to 20 milliamperes. (Refer to B873-002 & B875-002 Field Connections, p. 164). The input is converted to a numerical value, ranging from 0001 to 4095 (Standard). or 4096 to 8191 (Elevated), Values of 0000, 4095, 4096, or 8192 indicate invalid data and a possible problem. (Refer to the Data Value Reference Chart, p. 162). The value is directly proportional to the input signal. For example, an input voltage of 3.0V causes the module to send a value of 2048 (Standard). Or the input could be 12mA, which would produce a value of 6144 (Elevated). (Refer to Input to Data Value Conversion, p. 161).

Note: Not having voltage or current on an input channel produces a data value of 0000 (Standard) or 4095 (Elevated).

The PC polls the module and places the values into input registers (30XXX) designated by the programmer.

Each time the module is powered up, it performs diagnostic tests, resets the input latches, and, for each channel, presents a value of 0000 to the controller. The value is present for approximately three seconds after power up. The module will then start converting the inputs according to the schedule found in the *B873-002 & B875-002* Throughput Rate, p. 163.

B873-002 & B875-002 Switch Settings and Indicators

Switch Settings There is a DIP switch located at the rear of the module. Switches 1 and 2 are not used. Switch 3 can be set to either Module Reset or Module Run. It must set to the Module Run position for the module to operate. Switch 4 is used to set which data value range the module will produce. Select either Normal Range or Elevated Range. Make sure you set Switch 3 and 4 before inserting the module into the housing. Refer to the figure below for a key to setting the DIP switch.

BLACK BOX INDICATES SWITCH IN DOWN POSITION

Indicators The ACTIVE, OVER RANGE, UNDER RANGE indicators are located on the front panel of the module. The OVER RANGE and UNDER RANGE indicators are shared by all of the module's input channels. The module's status can be determined by referring to the table below.

The following table gives the Indicator readings for the B873-002 & B875-002 Modules:

Indicator	State	Condition
Active	ON BLINKING OFF	The module is communicating properly and PC is running The module failed the powerup reference test The module failed the internal diagnostic test/PLC is not in Run mode/communication from PLC to module has failed
Over Range	OFF ON or FLICKERING	All input are within the valid input range One or more inputs have exceeded the valid input range
Under Range	OFF ON or FLICKERING	All input are within the valid input range One or more inputs have dropped below the valid input range

B873-002 & B875-002 Installation

Installing the Remove the module from the box and check for damage. If damage is found, contact your salesman or distributor for correct return procedure. Set switch three to the Module Run position, and Switch four to the data range selected for input - either Standard or Elevated - before inserting the module into the housing. (Refer to *Switch Settings, p. 155*).

The following figure shows the 873 / 875 Module, at pre-installation.

Included with the module is an Analog Connector Set (Part# AS-8533-001 for B873-002 and Part# AS-8533-002 for B875-002).

The Connector Set consists of two mounting screws, a wire duct, and either one (B873-002) or two (B875-002) field wiring connectors. Each connector has eighteen recessed slotted screw terminals and can accept various wire gauges, but 16 to 20 gauge is recommended for the field side wiring.

Module Characteristics

Note: The wiring connections can only be made with an 1/8 inch blade screwdriver.

The connector plugs into the module with the field wiring to the left. The removable connector permits module removal and replacement without disturbing the wiring. Refer to the diagram for the Terminal Numbering for the terminal functions. The wire duct protects the connections to the Analog Input Module from being damaged or loosened when the module to its immediate left is removed.

Installing the Wire Duct The following is the Wire Duct Installation Diagram, for the B873/B875 Module.

Steps to	The fo	ollowing table lists the steps for installing the B873/B875 Module:
Installation	Step	Action
	1	Turn off the power to the housing.
	2	Determine which slot will be used for the Analog Module.* If there is a duct present, and it is different from the one provided in the connector set, then it must be removed.This is accomplished by removing the two screws located on the top and bottom of the housing and then pulling the duct out.
	3	If there is a module to the left of this slot, it must be removed until installation of the duct is complete.
	4	Insert the wire duct between the two slots with the screw holes to the left. (Refer to the Installation Diagram.)
	5	Using the two 1/4 inch slotted screws provided in the package, secure the wire duct to the housing.
	6	Re-install the module(s) and complete the wiring connections. *The wire duct can not be installed for the left-most slot of the housing. Therefore the use of this slot for the Analog Module is not recommended.

B873-002 & B875-002 Calibration

Required Tools

Calibration is recommended at 12 month intervals for operation at or below 405 C (1045 F) and at 6 month intervals between 405 and 605 C (1045 and 1405 F). The following tools are needed to calibrate a B873-002 or B875-002 module in a running system:

1.	A programmer
2.	A precision voltmeter
3.	An Analog DC Voltage/Current
4.	A 1/4 inch Phillips screwdriver
5.	A 1/8 inch standard screwdriver
6.	An adhesive for the trim pot adjusting screw (e.g. Locktight Glyptol)

Calibration Adjustments

To achieve full accuracy of the module, allow it to warm up for one hour with a valid input present at the channel to be used for the calibration. Without warm up, the accuracy of the data values will be $\pm/-\%2$ counts.

1.	Remove trim pot access cover, located on the front panel.			
2.	Open module handle to expose connector(s) and terminal(s).			
3.	Unplug field wiring connector(s).			
4.	Set up Programmer to monitor the register for the channel used for calibration.			
Metho	d using a voltage source:			
5a.	Connect the positive lead of the voltage source to the channel's input + terminal and the negative lead to the channel's input - terminal.			
6a.	Set voltage source to output 1.00048 volts.			
7a.	While monitoring the register, adjust the top trim pot until the value toggles between 0000 and 0001 (Standard) or 4095 and 4096 (Elevated).			
8a.	Use an adhesive to secure the adjusting screw on the trimmer.			
9a.	Set voltage source to output 4.99951 volts.			
10a.	While monitoring the register, adjust the bottom trim pot until the value toggles between 4095 and 4096 (Standard) or 8191 and 8192 (Elevated).			
Metho	Method using a current source:*			
5b.	Connect the positive lead of the current source to the channel's input + terminal and the negative lead to the channel's input - terminal.			
6b.	Set current source to output 4.002mA.			
7b.	While monitoring the register, adjust the top trim pot until the value toggles between 0000 and 0001 (Standard) or 4095 and 4096 (Elevated).			
8b.	Use an adhesive to secure the adjusting screw on the trimmer.			
9b.	Set current source to output 19.998mA.			
10b.	While monitoring the register, adjust the bottom trim pot until the value toggles between 4095 and 4096 (Standard) or 8191 and 8192 (Elevated).			
11.	Disconnect input source.			
12.	Re-connect field wiring.			
13.	Close module handle.			
14.	Replace trim pot access cover.			

Input to Data The following figure shows the Input to Data Value Conversion chart. Value Conversion

Calculation for determining Data Value (refer to the figure above and the table below):

Voltage:

(Input Voltage - 1) X 1024 Example: (Refer to Graph) (4.4521V - 1) X 1024 3.4521 X 1024 = 3534.9504 (Add 4096 for Elevated Value)

Data Value = 3535 Standard 7631 Elevated (Rounded to the nearest whole number)

Current: (Input Current - 4) X 256 Example: (Refer to Graph) (13.078mA - 4) X 256 9.078 X 256 = 2323.968 (Add 4096 for Elevated Value) Data Value = 2324 Standard 6420 Elevated

Data Value	The following is the Data Reference Chart for the B873-200 & B875-200 Modules.			
Reference Chart	Standard	Elevated	Input Voltage, Current, or Condition	
	0000	0000	1. First three seconds after power up	
			2. During failure recovery	
	0000	4095	Under range	
	0000	OFF	1.0000V or 4mA	
	4095	4096	4.999V or 19.995mA	
	4095	8192	Over range	

B873-002 & B875-002 Throughput Rate

Update Interval	Update Interval:* B873- 4 Channels 400ms B875- 8 Channels 710ms Out of Range 220ms per channel All registers are updated every 400 or 710ms, as long as the inputs on all of the channels are within the valid range. 220ms is added to the update interval for each channel either under or over range. The input is considered under range when the voltage is at -3V or below. This keeps unused channels from adding time to the Update Interval.
	Note: The Over Range indicator will be on or flickering, if the input on any channel is between .999 and -2.999V or below 4mA; but the 220ms time will not be added to the Update Interval.
Update Interval Example	On an eight channel module, 2 channels are under range. All the registers assigned to the module will be updated every 1150ms, until the inputs on the out of range channels return to the valid range. When they do, the update interval will return to 710ms. Update Interval = $(400 \text{ or } 710) + (\text{Out of Range Channels X 220})$ Using the example above: $(710) + (2 \times 220) = 1150\text{ms}$ If one channel returned to the valid range, the update interval would reduce to 930ms.
	Note: As long as the channel is out of range, the register assigned to it will either have data of 0000 (4095 Elevated), under range, or 4096 (8192 Elevated), over range. (Refer to the Data Value Reference Chart) * The Update Interval is the amount of time necessary to update the data for all the registers assigned to the module.

B873-002 & B875-002 Field Connections

User Connections			ew terminal strip; and the rigid wiring vithout disturbing the wiring.
Connections B873-002 Terminal Numbering and Wire Connections	B873-002 terminal num presented below. CASE GROUND CURRENT SENSE 1 INPUT 1+ INPUT 1- SHIELDING 1 CURRENT SENSE 2 INPUT 2+ INPUT 2- SHIELDING 2		
	CURRENT SENSE 3 INPUT 3+ INPUT 3- SHIELDING 3	00000000000	PLASTIC HOUSING + - CURRENT SOURCE

Note: If a user has a process where the Over-range or Under-range detection is immaterial, the unused voltage or current terminal, including the shields, on the field connector should be jumpered to Case ground.

If Over-range or Under-range detection is important to your process, and this detection is causing throughput problems with the unused channels (because they float or spike outside the range), then the unused voltage or current channels at the field connector, should be connected in parallel, to a valid Input channel. As long as the valid channel stays within range, the tied channels will also stay within range. For Current, 4 to 20ma operation, the valid Input is the only Input requiring the 250 Ohm resistor to be in the circuit.

Case ground is effective when the H8XX housing is connected to earth ground. The shield cannot be connected, both ends, to the device and the module. The exception to this is where the device shield is part of the device input circuit, and is not connected internally to device case ground.

Note: Any module run-time diagnostic failure will result in a 0000 value being returned to the controller, regardless of selected range.

B873-002 & B875-002 Specifications

	The following table gives specifications for the B873-002 & B875-002 Input Modules.
Description	Analog input 4 - 20 mA, 1 - 5 VDC
Number of Channels	4, (B873-002) 8, (B875-002)
Operating Range Voltage/Current	1 - 5 VDC / 4 - 20 mA
Impedance Voltage Current	0.5 Megohm per input 1 Megohm differentially
Resolution	12 bit
Filter	-3dB @ 18Hz Rolloff -20dB per decade
Linearity	+.05% of full scale @ 25 °C (77 °F)
Protection	240VAC RMS
Common Mode Range Rejection	0VAC to 30VAC RMS > -86dB @ 60Hz
Isolation Channel to Channel Input to Case Module	250 VAC RMS 500 VAC RMS for one minute 1500 VAC RMS for one minute 300 VAC RMS continuous
Accuracy Overall At 25 °C (77 °F) Offset Drift Gain Drift	7 mV or 19.7μA +/-0.488 mV or +/-1.95μA @ 1.2207 mV +/-30μV or +/-0.12μA per °C +/-16.7μV or +/-0.07μA per °F +/-15ppm per °C
Repeatability	Over a twenty-four hour period, with a constant voltage and at a constant operating temperature, the input data value will be within +/-2 counts.
Power Required +5 V +4.3 V -5 V	300 mA 300 mA 0 mA
Data Format 0000 4095 0000 to 4095 4096 to 8191 4096 8192	Power Up On Diagnostic Failure or during failure Recovery Under Range - Standard Under Range - Elevated Valid - Standard Range Valid - Standard Range Over Range - Standard Over Range - Elevated
Throughput Rates Update Interval Out of Range	4 Channels 400 mS 8 Channels 710 mS (Including Diagnostics) 220 mS for each channel in Under or Over Range condition (Refer to Throughput Section) AS-8533-001 (B873-002)
Terminal Connector	AS-8533-002 (B875-002)

B873-002 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

REG 8 CH IN	
Config	
Parameter Name	Value
r MAPPING	WORD (%IW-3X)
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	4
· INPUT TYPE	BINARY 🔻
1 : 140 XBP 3 : B873	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW-3X)	-	
Inputs Starting Address	1	-	
Inputs Ending Address	4	-	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 4 registers input 3x	Mapped as 4 words input %IWx
Input Type	BIN/BCD	BIN/BCD

B875-002 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

t Values

ANALG 8 CH IN	
Config	
Parameter Name	Value
r MAPPING	WORD (%IW-3X)
L INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	8
· - · INPUT TYPE	BINARY 🔻
1 : 140 XBP . 3 : B875	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW-3X)	-	
Inputs Starting Address	1	-	
Inputs Ending Address	8	-	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 8 registers input 3x	Mapped as 8 words input %IWx
Input Type	BIN/BCD	BIN/BCD

B873-012 & B875-012 Analog Input

11

At a Glance

Purpose	This chapter explains features and operation of the B873-012 & B875-012 Input Modules.			
What's in this	This chapter contains the following topics:			
Chapter?	Торіс	Page		
	B873-012 & B875-012 Overview	170		
	B873-012 & B875-012 Switch Settings and Indicators	171		
	B873-012 & B875-012 Installation	172		
	B873-012 & B875-012 Calibration	175		
	B873-012 & B875-012 Throughput Rate	177		
	B873-012 & B875-012 Field Connections	178		
	B873-012 & B875-012 Specifications	180		
	B873-012 Parameter Configuration	181		
	B875-012 Parameter Configuration	182		

B873-012 & B875-012 Overview

Module Features The B873-012 and B875-012 are analog input modules and can be used with 984 Programmable Controllers. The only difference between the two modules is that the B873-012 has four input channels and the B875-012 has eight input channels. Both modules accept inputs of -10 to +10 volt analog signals. The input is converted to a numerical value, ranging from 0001 to 8191. Values of 0000 or 8192 indicate invalid data. (Refer to the Data Value Reference Chart.) The value is directly proportional to the input signal. For example, an input voltage of -5V causes the module to send a value of 2048. If the input signal goes to 5V, the module sends a value of 6144. (Refer to Input to Output Data Conversion Chart.)

Note: 0.0V or no voltage on an input channel produces a value of 4096.

The PC polls the module and places the values into input registers (30XXX) designated by the programmer.

Each time the module is powered up, it performs diagnostic tests, resets the input latches, and, for each channel, presents a value of 0000 to the controller. The value is present for approximately three seconds after power up. The module will then start converting the inputs according to the schedule found in the Throughput Rate Section.

B873-012 & B875-012 Switch Settings and Indicators

Switch Settings There is a DIP switch located at the rear of the module. Switches 1, 2 and 4 are not used. Switch 3 can be set to either Module Reset or Module Run. It must be set to the Module Run position for the module to operate. Make sure you set Switch 3 before inserting the module into the housing. Refer to the figure below for DIP switch settings.

BLACK BOX INDICATES SWITCH IN DOWN POSITION

Indicators The ACTIVE and OVER RANGE indicators are located on the front panel of the module. The OVER RANGE indicator is shared by all of the module's input channels. The module's status can be determined by referring to the table below.

Indicator	State	Condition
ACTIVE	on Blinking Off	The module is communicating properly and the PC is running The module failed the powerup reference test The module failed the internal diagnostic test/PLC is not in Run mode/communication from PLC to module has failed
OVER RANGE	OFF ON or BLINKING	All input are within valid input range One or more inputs have exceeded the valid input range

B873-012 & B875-012 Installation

Installing theRemove the module from the box and check for damage. If damage is found, contact
your salesman or distributor for correct return procedure.
Set Switch three to the Module Run position and Switch four to the data range
selected for input - either Standard or Elevated - before inserting the module into the
housing. (Refer to Switch Settings, p. 171.)

The following figure shows the B873-012 / B875-012 Module at pre-installation.

Module Characteristics

Included with the module is an Analog Connector Set (Part# AS-8533-001 for B873-012 and Part# AS-8533-002 for B875-012).

The Connector Set consists of two mounting screws, a wire duct, and either one (B873-012) or two (B875-012) field wiring connectors. Each connector has eighteen recessed slotted screw terminals and can accept various wire gauges, but 16 to 20 gauge is recommended for the field side wiring.

Note: The wiring connections can only be made with a 1/8 inch blade screwdriver.

The connector plugs into the module with the field wiring to the left. The removable connector permits module removal and replacement without disturbing the wiring. Refer to diagram for Terminal Numbering, for terminal functions. The wire duct protects the connections to the Analog Input Module from being damaged or loosened when the module to it's immediate left is removed.

Installing the Wire Duct The following figure is the Wire Duct Installation Diagram.

Steps to Installing the	The following step table describes the installation of the Wire Duct, for the B873-012 & B875-012 Modules:		
Wire Duct	Step	Action	
	1	Turn off the power to the housing.	
	2	Determine which slot will be used for the Analog Module.* If there is a duct present and it is different from the one provided in the connector set, then it must be removed. This is accomplished by removing the two screws located on the top and bottom of the housing and then pulling the duct out.	
	3	If there is a module to the left of this slot, it must be removed until installation of the duct is complete.	
	4	Insert the wire duct between the two slots with the screw holes to the left. (Refer to the Installation Diagram.)	
	5	Using the two 1/4 inch slotted screws provided in the package, secure the wire duct to the housing.	
	6	Re-install the module(s) and complete the wiring connections. * The duct cannot be installed for the left-most slot of the housing. Therefore the use of this slot for the Analog Module is not recommended.	

B873-012 & B875-012 Calibration

Required Tools

Calibration is recommended at 12 month intervals for operation at or below 405 C (1045 F), and at 6 month intervals between 405 and 605 C (1045 and 1405 F). The following table indicates the tools required, to calibrate the B873-012 & B875-012 Modules:

1.	A programmer		
2.	A precision voltmeter		
3.	An Analog DC Voltage/Current		
4.	A 1/4 inch Phillips screwdriver		
5.	A 1/8 inch standard screwdriver		
6.	An adhesive for the trim pot adjusting screw (e.g. Locktight Glyptol)		

Gain Adjustments Procedure

To achieve full accuracy of the module, allow it to warm up for one hour, with a valid input present at the channel to be used for the calibration. Without warm up, the accuracy of the data values will be +2 counts. The following table gives the steps for Gain Adjusting the B873-012 & B875-012 Modules:

Step	Action		
1	Remove trim pot access cover, located on the front panel.		
2	Open module handle to expose connector(s) and terminal(s).		
3	Unplug field wiring connector(s).		
4	Set up Programmer to monitor the register for the channel used for calibration.		
5	Connect the positive lead of the voltage source to the channel's input + terminal and the negative lead to the channel's input - terminal.		
6	Set voltage source to output 9.99877 volts.		
7	While monitoring the register, adjust the trimmer until the value toggles between 8191 and 8192 in binary mode.		
8	Use an adhesive to secure the adjusting screw on the trimmer.		
9	Disconnect input source.		
10	Re-connect field wiring.		
11	Close module handle.		
12	Replace trim pot access cover.		

2. No voltage at input terminal

9.99756V

Over range

8191

8192

Input Voltage to The following is the Input Voltage to Output Data Conversion Chart.

B873-012 & B875-012 Throughput Rate

Update Interval The following table provides Update Intervals for the B873-012 & B875-012 Modules.

Update Interval:*		
B873-	4 Channels	400ms
B875-	8 Channels	710ms
Out of Range		220ms per channel

All registers are updated every 400 or 710ms, as long as the inputs on all of the channels are within the valid range. 220ms is added to the update interval for each channel either under or over range.

Throughput Rate Example On an eight channel module, 2 channels are under range. All the registers assigned to the module will be updated every 1150ms, until the inputs on the out of range channels return to the valid range. When they do, the update interval will return to 710ms. Update Interval = (400 or 710) + (Out of Range Channels X 220)Using the example above: $(710) + (2 \times 220) = 1150\text{ms}$

If one channel returned to the valid range, the update interval would reduce to 930ms.

Note: As long as the channel is out of range, the register assigned to it will either have data of 0000 (4095 Elevated), under range, or 4096 (8192 Elevated), over range. (Refer to *Data Value Reference Chart, p. 176*)

* The Update Interval is the amount of time necessary to update the data for all the registers assigned to the module.

Note: Any module run-time diagnostic failure will result in a 0000 value being returned to the controller, regardless of selected range.

B873-012 & B875-012 Field Connections

User Connections	User connections are made to a standard screw terminal strip, and the rigid wiring system permits module insertion or removal without disturbing the wiring.			
B873-012 Terminal Numbering and Wire Connections	<u> </u>			ponding input functions are presented in METAL HOUSING VOLTAGE SOURCE -10 TO + 10 FIELD WIRING
	INPUT 4+ INPUT 4- SHIELDING 4 CASE GROUND	9999		EXAMPLE

B875-012 terminal numbering and corresponding input functions are presented in the figure below.

B873-012 & B875-012 Specifications

	e following table gives specifications for the B873-012 & B875-012 Input dules.		
Description	Analog input -10 to +10 VDC		
Number of Channels	4, (B873-012) 8, (B875-012)		
Operating Range	-10 to +10 VDC		
Impedance	0.5 Megohm per input 1 Megohm differentially		
Resolution	13 bit		
Filter	-3dB @ 18Hz Rolloff -20dB per decade		
Linearity	+.05% of full scale @ 25 °C (77 °F)		
Protection	240VAC RMS		
Common Mode Range Rejection	0VAC to 30VAC RMS > -86dB @ 60Hz		
Isolation Channel to Channel Input to Case Module	250 VAC RMS 500 VAC RMS for one minute 1500 VAC RMS for one minute 300 VAC RMS continuous		
Accuracy Overall At 25 °C (77 °F) Offset Drift Gain Drift	17.1mV 1.2207mV 100µV per °C 55.6µV per °F +/-15pm per °C +/-8.3ppm per °F		
Repeatability Over a twenty-four hour period, with a constant voltage and at a constant operation input data value will be within +/-2 counts.			
Power Required +5 V +4.3 V -5 V	300 mA 300 mA 0 mA		
Data Format 0000 0001 to 8191 8192	Power Up On Diagnostic Failure or during failure Recovery Under Range Valid Over Range		
Throughput Rates Update Interval Out of Range	4 Channels 400 mS 8 Channels 710 mS (Including Diagnostics) 220 mS for each channel in Under or Over Range condition		
Terminal Connector	AS-8533-001 (B873-012) AS-8533-002 (B875-012)		

B873-012 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

REG 4 CH IN	
Config	
Parameter Name	Value
r MAPPING	WORD (%IW-3X)
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	4
· INPUT TYPE	BINARY 🔻
1 : 140 XBP 3 : B873	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW-3X)	-	
Inputs Starting Address	1	-	
Inputs Ending Address	4	-	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 4 registers input 3x	Mapped as 4 words input %IWx
Input Type	BIN/BCD	BIN/BCD

B875-012 Parameter Configuration

Parameter and **Default Values**

..... Para

ameter	Configuration	Window	

ANALOG 8 CH IN	
Config	
Parameter Name	Value
r MAPPING	WORD (%IW-3X)
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	8
► INPUT TYPE	BINARY 🔻
1 : 140 XBP . 3 : B875	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Monning	, ,		
Mapping	WORD (%IW-3X)	-	
Inputs Starting Address	1	-	
Inputs Ending Address	8	-	
Input Type	BINARY	BCD	

Mapping Parameter References

	984LL, Concept, ProWORX	Unity
Reference Type	Mapped as 8 registers input 3x	Mapped as 8 words input %IWx
Input Type	BIN/BCD	BIN/BCD

B875–102 High Speed Analog Input

12

At a Glance Purpose This chapter describes the functional and physical characteristics of the B875–102 High Speed Analog Input module. What's in this This chapter contains the following topics: Chapter? Topic Page B875-102 High Speed Analog Input, Inputs 184 B875–102 High Speed Analog Input, Performance Considerations 187 191 B875-102 High Speed Analog Input. Communications with the PLC B875-102 High Speed Analog Input, Typical Circuit and Ground Connections 193 B875-102 High Speed Analog Input, Switch Settings 194 B875-102 High Speed Analog Input, Indicators 203 B875-102 High Speed Analog Input, Recalibration 204 B875-102 High Speed Analog Input, Installation 207 B875-102 High Speed Analog Input, Specifications 210 B875-102 Parameter Configuration 212

B875–102 High Speed Analog Input, Inputs

Configuration

Module inputs are configurable in two groups by means of DIP switches. The following table shows input switch group assignments for the four or eight input circuit configurations.

Configuration	Input Group A	Input Group B
Eight Input circuits	1, 2, 3, 4	5, 6, 7, 8
Four input circuits	1, 2	3, 4

Input Ranges The following table shows the five input ranges acceptable to each input range group. The module will accept an input as much as 2% FSR above its specified range without going into an over-range condition, but nothing below range.

Voltage range (V)	Corresponding Current Range (mA
0—5	0—20
0—10	0—40
1—5	4—20
-10-+10	-40+40
-5+5	-20+20

For purposes of determining load and protection considerations for the inputting of field circuits, The following figure is a schematic diagram of the input circuit's front end. Note the built-in 250 Ω resistor connected to the current input terminal. When the current sense terminal is externally jumpered to the positive input terminal, current input becomes possible for that input regardless of the voltage range selected.

Note: The current sense function has been provided specifically for the 4—20 mA current loop applications (1—5 V input range). However, current mode is operable on all ranges.

B875–102 High Speed Analog Input, Input Circuit Front End.

B875–102 High Speed Analog Input, Performance Considerations

Data Update Period	The data update period is the time taken by the module to present fresh data for each channel. With four input circuits, this period is no more than 2.4 ms; for an eight input circuit configuration, this period is no more than 3.0 ms.
Autocalibration	An internal autocalibration process is executed at appropriate times (if necessary) to compensate signal processing for front end drift. The autocalibration function employs feedback mechanisms to adjust the reference voltage to offset gain in the analog to digital converter. Calibration is monitored continuously in the background and adjusted if and when necessary. The following figure shows autocalibration points for all five input ranges. Autocalibration points are indicated by heavy dots on slope line. The autocalibration process uses the 10 V reference to calibrate the module. The reference voltage is factory preset to exactly 10 volts (zeroed to four places). It should be readjusted in the field once per year.
Input Data Conversion	The input module performs an analog-to-digital conversion of an input analog signal with 12 bit resolution (i.e., 1 part in 4096). This implies that the least significant bit of the output code corresponds to slightly more than 0.024% of full scale. The following illustration is a coarse grain conversion chart for plotting analog input against the equivalent numerical value output to the PC in raw binary format. The example illustrated shows an input voltage of 1.25 V (25% of 5 V FSR) and a numerical count of 1024 (25% of 4200) as projected through the 455 slope line. Calculate exact values using the following proportional equation: Where FSR is full scale range for analog input (including bipolar) and FCR is full count range (4200) in a raw binary format.

B875-102 High Speed Analog Input Autocalibration Points-All Ranges

4096		/	
		/	1
<u>2048</u>			
1024			
0000			
$\uparrow \uparrow \uparrow$	↑	↑	
V. Range 0 to 5V 0.0 1.25 2.5	3.75	5.0	5.127
I. Range 0 to 20 mA 0.0 5.0 10.0	15.0	20.0	20.500
	٨	A	A
V. Range 0 to 10V 0.0 2.5 5.0V	7.5	10.0	10.254
I. Range 0 to 40 mA 0.0 10.0 20.0	30.0	40.0	41.016
	Å	Å	A
V. Range -5 to +5V -5.0 -2.5 0.0	2.5	5.0	5.254
I. Range -20 to 20 mA -20.0 -10.0 0.0	10.0	20.0	21.016
	Å	Å	A
V. Range -10 to +10V -10.0 -5.0 0.0	5.0	10.0	10.508
I. Range -40 to 40 mA -40.0 -20.0 0.0	20.0	40.0	42.032
	A	٨	۸
V. Range 1 to 5V 1.0 2.0 3.0	4.0	5.0	5.102
I. Range 4 to 20 mA 4.0 8.0 12.0	16.0	20.0	20.400

B875–102 Input Signal vs. Output Data (Raw Binary Format)

Format Conversion	The module is capable of presenting the digitized data to the PC in either raw binary (RB) or converted binary (CB) format. The bit pattern in each case is different. The format is switch selectable and need not be the same for each group of input circuits. A Modicon programmer will display either type of data in one of three different ways: binary, hexadecimal, or decimal form.
Conversion Accuracy	Conversion linearity for this module is 0.05% of full scale-referenced to a straight line drawn through the measured full-scale value and the measured zero point-over the module's operating temperature range. Raw Binary (RB) Format After digitizing the input signal, the input module presents data in RB format. In decimal representation, data in RB format must be within the 0 to 4200 range. Normally, a 12bit device would have an upper data limit of 4095. This analog module has the means of allowing the input to be up to 2% over-range at the same resolution (i.e., the count in raw binary may go up to 4200). In RB format, the data range is the same regardless of the voltage range. Converted Binary (CB) Format CB is obtained by transforming the RB format within the module. When CB data is viewed by the PC or programmer in decimal mode, it looks like a 4-digit voltmeter (DVM) with no sign or decimal point. In CB for- mat, upper and lower data limits are voltage range dependent. Because of the missing sign, CB format is used only for unipolar voltage ranges. The following figure shows an example of raw binary output. When a 5 V signal is digitized by the module set for 0 to 10 V range, it produces a converted binary code 0800 hex or 2048 decimal. Raw Binary Word Format

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0

The following figure shows the conditions in converted binary format which produce 1388 hex or 5000 decimal. Converted Binary Word Format

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	1	0	0	1	1	1	0	0	0	1	0	0	0

B875–102 High Speed Analog Input. Communications with the PLC

Input Ranges and Output Data I imits

As shown in the following table, data can be in either raw binary or converted binary format. Within the 2% maximum over-range margin allowed, no error code is reported to the PLC.

Input Ranges and Output Data limits Voltage range Input Voltage **Raw Binarv Converted Binary** 0 5 1/ 0.000 0000 0000

0—5 V	0.000	0000	0000
	5.000	4096	5000
	5.127 (max)	4200	5127
1—5 V	1.000	0000	1000
	5.000	4096	5000
	5.127 (max)	4200	5102
0—10 V	0.000	0000	0000
	9.999	4095	9999
	10.000	4096	N/A
	10.254 (max)	4200	N/A
-5—+5 V	-5.000	0000	Disallowed
	0.0000	2048	N/A
	5.000	4096	N/A
	5.254 (max)	4200	N/A
-10—+10 V	-10.000	0000	Disallowed
	0.000	2048	N/A
	10.000	4096	N/A
	10.508 (max)	4200	N/A

Diagnostic Communications

Diagnostic procedures are executed during the five second initialization period following power--up. Diagnostic routines are also run during wait states concurrent with executing A/D conversions. System diagnostics are: RAM checks, ROM checks, UART checks, as well as checking the legality of configuration switch settings and monitoring the ability to autocalibrate.

If the module fails to pass an internal diagnostic, two retries are made. If either one succeeds, the temporary failure is considered a soft failure and is not reported to the PC but the module system continues processing uninterrupted. If the module fails the diagnostic three times, the system goes into a power--up reset condition, switch settings and monitor

Note: While power-up diagnostics are running, or following detection of a hard failure, data is not available to the PLC.

Good Data. The following illustration shows status flags and data word format for good data to the plc. When sending good data, status flag bits 14 and 15 are reset to 0.

Good Data Word Output to PLC

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0					RAV	V BIN	VARY	DA1	ΓA				
0	0			CONVERTED BINARY DATA											

Out-of-range Data. The following figure shows status flags and data word format of out-of-range data output to the PLC. When sending out-of-range data, status bit 14 will be reset to 0, bit 15 will be reset to 1, and the OUT-OF-RANGE indicator will illuminate.

Out-of-range Data Word Output to PLC

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0					RA	N BII	VAR	Y DA	TA				
1	0			CONVERTED BINARY DATA											

Out--of--Range requires careful examination. Since the module receives instantaneous data from the field but sends averaged data to the PC, instantaneous data less than 0 or greater than 4200 in RB format is considered out-of-range. Such data will be forced (clamped) to 0000 for under--range and 4200 for over-range values. However, the averaged data will not necessarily be out-of-range if the condition existed for less time than the total averaging period. In this case, the format indicates at least one of the instantaneous data samples in the average is out of range. Its value for averaging purposes is the clamped value; the average may or may not be out of range. The red OUT-OF-RANGE light will remain ON as long as an out-of-range data sample is included in the average.

B875–102 High Speed Analog Input, Typical Circuit and Ground Connections

Field Connections The following illustration shows typical field circuitry connected to the field connector.

Note: Shields 1—8 are tied together internally and also to field side ground within the module. For grounded sources, a jumper to case ground must be externally supplied by the user.

B875–102 High Speed Analog Input, Switch Settings

Dip Switch Bank A The high speed analog input module can be set for any of the five input voltage or current ranges by means of DIP switches. You can also select from seven periods of digital filtering; a feature which allows an instantaneous voltage sample to become part of a moving average. The DIP switches also set the module for 4 or 8 circuit mode and binary or decimal output.

For discussion purposes, we will designate the upper DIP switch bank, A (DIP Sw-A) and lower bank, B (DIP Sw-B). These switches are accessed through ports at the rear of the module.

The following illustration shows DIP Sw-A as seen from the rear of the module. Dip Sw-A is used for selecting an input range.

Dip Switch Bank A-Normal Operation

Input Range	Switch	On	Off
1 - 5 V	A-1	Х	
4 - 20 mA	A-2	Х	
	A-3	Х	
0 - 10 V	A-1		X
	A-2	Х	
	A-3	Х	
0 - 5 V	A-1	Х	
	A-2		X
	A-3	Х	
+/- 10 V	A-1		X
	A-2		X
	A-3	Х	
+/- 5 V	A-1	Х	
	A-2	Х	
	A-3		X

Inputs Group A (8 Circuit Mode)

Inputs Group B (8 Circuit Mode) The following table describes the input ranges for group B (Inputs 5 - 8):

Input Range	Switch	On	Off
1 - 5 V	A-4	х	
4 - 20 mA	A-5	х	
	A-6	х	
0 - 10 V	A-4		X
	A-5	х	
	A-6	х	
0 - 5 V	A-4	х	
	A-5		X
	A-6	х	
+/- 10 V	A-4		X
	A-5		X
	A-6	х	
+/- 5 V	A-4	х	
	A-5	х	
	A-6		x

The following table describes the input ranges for group A (Inputs 1 - 4):

nputs Group A (4 Circuit Mode)	The following	table des	scribe	es the input ranges for group A (Inputs 1 - 2):
(4 Circuit Mode)	Input Range	Switch	On	Off
	1 - 5 V	A-1	Х	
	4 - 20 mA	A-2	Х	
		A-3	Х	
	0 - 10 V	A-1		X
		A-2	Х	
		A-3	Х	
	0 - 5 V	A-1	Х	
		A-2		X
		A-3	Х	
	+/- 10 V	A-1		X
		A-2		X
		A-3	Х	
	+/- 5 V	A-1	Х	

A-2

A-3

Х

Х

In (4

I Circuit Mode)	Input Range	Switch	On	Off
	1 - 5 V	A-4	Х	
	4 - 20 mA	A-5	Х	
		A-6	Х	
	0 - 10 V	A-4		X
		A-5	Х	
		A-6	Х	
	0 - 5 V	A-4	Х	
		A-5		X
		A-6	Х	
	+/- 10 V	A-4		X
		A-5		X
		A-6	Х	
	+/- 5 V	A-4	Х	
		A-5	Х	
		A-6		X

The following table describes the input ranges for group \mathbf{P} (inputs $\mathbf{Q} = \mathbf{A}$):

Setting Input Averaging

It is possible to compensate for spurious noise and other forms of amplitude modulation coming through the analog input filter by making the latest input sample part of a moving average-a form of digital filtering. This moving average technique has no affect upon the update interval.

The following tables show Sw-B setting for selecting among seven input average sample periods for both 8 and 4 circuit configurations.

Sw-B has other functions in addition to average sampling; Switch B7 is set to ON for binary code output or OFF for decimal code output for Group A (inputs 1-4 in the 8 circuit mode and inputs 1-2 in the 4 circuit mode). Switch B8 does the same for Group B.

SW-B Settings Group A (8 Circuit Mode)

The following table describes SW–B Settings for all periods of input averaging (Eight Circuits) for group A (Inputs 1 - 4):

No. of samples averaged	Switch	On	Off
1	B-1	Х	
	B-2	х	
	B-3	Х	
2	B-1		X
	B-2	х	
	B-3	Х	
4	B-1	Х	
	B-2		X
	B-3	Х	
8	B-1		X
	B-2		X
	B-3	Х	
16	B-1	Х	
	B-2	Х	
	B-3		X
32	B-1		X
	B-2	Х	
	B-3		x
64	B-1	Х	
	B-2		x
	B-3		X

6	SW-B Settings The following table describe Group B (Fight Circuits) for group B (•	, C ,	• •	
Group B (Eight Circuits) for group B (č	(8 Circuit Mode)	No. of samples	• •	
	SW-B Settings The following table describe		•		

he following table describes SW–B Settings for all periods of input averaging Eight Circuits) for group B (Inputs 5 - 8):

No. of samples averaged	Switch	On	Off
1	B-4	Х	
1	B-5	Х	
	B-6	Х	
2	B-4		X
	B-5	х	
	B-6	Х	
4	B-4	Х	
	B-5		Х
	B-6	Х	
8	B-4		X
	B-5		Х
	B-6	Х	
16	B-4	Х	
	B-5	Х	
	B-6		X
32	B-4		X
	B-5	Х	
	B-6		X
64	B-4	Х	
	B-5		X
	B-6		x

SW-B Settings Group A (8 Circuit Mode)

The following table describes SW–B Settings for all periods of input averaging (Eight Circuits) for group A (Inputs 1 - 2):

No. of samples	Switch	On	Off
averaged			
1	B-1	Х	
	B-2	Х	
	B-3	Х	
2	B-1		X
	B-2	Х	
	B-3	Х	
4	B-1	Х	
	B-2		X
	B-3	Х	
8	B-1		X
	B-2		X
	B-3	Х	
16	B-1	Х	
	B-2	Х	
	B-3		X
32	B-1		X
	B-2	Х	
	B-3		X
64	B-1	Х	
	B-2		X
	B-3		X

SW-B Settings Group B (8 Circuit Mode)

The following table describes SW–B Settings for all periods of input averaging (Eight Circuits) for group B (Inputs 3 - 4):

No. of samples averaged	Switch	On	Off
1	B-4	х	
	B-5	х	
	B-6	х	
2	B-4		Х
	B-5	х	
	B-6	Х	
4	B-4	Х	
	B-5		X
	B-6	х	
8	B-4		X
	B-5		X
	B-6	х	
16	B-4	Х	
	B-5	х	
	B-6		X
32	B-4		X
	B-5	х	
	B-6		X
64	B-4	Х	
	B-5		X
	B-6		Х

B875–102 High Speed Analog Input, Indicators

Overview

The following standard front-panel indicators reflect module communication status with the controller and provide an indication of field-side signal status. Indicator Status Summary Table

Indicator	State	Condition
Active	ON	The module is communicating properly with the PLC
	OFF	The module failed the internal diagnostic test, which determines if valid communication is possible.
Out of Range	OFF	All inputs are within the valid input range.
	BLINKING	One or more inputs are outside the valid input range.

The I/O Map for an eight-circuit configuration (B875) and four-circuit configuration (B873) looks alike.

B875–102 High Speed Analog Input, Recalibration

Overview	10 V r recalit The fo • A p sca • A 1 • A s	 Since the module is shipped factory-calibrated, it is the designer's intention that the 10 V reference voltage adjustment will be good for one year. It should be recalibrated annually thereafter. The following tools are needed to adjust the module's reference voltage: A precision digital readout voltmeter with an accuracy of 0.0001 V on a 10 V scale: 6-1/2 digits, to guarantee 4 bit count accuracy. A 1/8-inch bit, thin-blade screwdriver. A small-bit Phillips-head screwdriver. An adhesive (such as Loctite or Glyptol) to secure trim-pot adjustment screws. 			
	modu	Note: Field wiring may remain connected during the recalibration procedure, as the module's working state is not interactive with the reference voltage adjustment. Also, the module does not require warmup to attain temperature.			
Recalibration	Use th	ne following table to recalibrate the module.			
Procedure	Step	Action			
	1	Refer to illustration of reference voltage cover removal, below. Remove reference voltage adjustment cover to gain access to trim pot.			
	2	Connect DVM as shown in reference voltage adjustment circuit illustration, below.			
	3	Adjust reference voltage trim pot for exactly 10.0000 V.			
	4	Secure trim pot with adhesive.			
	5	Disconnect voltmeter and secure trim pot access cover.			
	6	Remove power from equipment housing.			

B875-102 High Speed Analog Input, Installation

Use the following table to install the module.

Overview

Module installation involves the following: unpacking the module; setting up the configuration switches; installing key pins in the housing; mounting the module in the housing; wiring the connector.

Installation Procedure

Step	Action
1	Remove module from shipping box and check for damage. If damage found, contact distributor (or sales person) for correct return procedure.
2	Ensure that power is removed from housing.
3	 Configure switch bank A as follows: A-1 through A-6 for desired input voltage ranges appropriate to the intended eight- or four-circuit configuration A7 to select eight- or four-circuit input mode. A8 to ON for normal operation.
4	 Configure switch bank B as follows: B-1 through B-6 for desired number of input averaging samples appropriate to eight- or four-circuit configuration designated above. B7 to select output code format
5	If using key pins (provided with housing shipment), install them above and below housing slot selected for this module's installation.
6	Open handle and insert module into housing, firmly seating edge connector in backplane.
7	Secure module using captive mounting screws at top and bottom of module's front panel.
8	Refer to field connector/input circuit pinout diagram, below. Connect field side wiring to double field connector (located on left side, front edge), laying in cable fan-out as desired. NOTE: Use field connector wiring sizes AWG—20 inclusive (solid or stranded).
9	If current sense input circuit(s) is being used, jumper appropriate current sense terminal on field connector to corresponding hot input (+) as shown in field connector/input circuit pinout diagram, below. NOTE: Unused inputs should be terminated to reduce electrical noise and other interference due to floating input lines. Jumper unused voltage and current terminals (including shields) to case ground. Case ground will only be effective if H8XX housing is connected to earth ground. Both ends of the shield cannot be connected to the device and module, unless the device shield is part of the device input circuit, and is not connected internally to the device case ground. NOTE: If over-range and under-range detection is required, and this detection is causing throughput problems with the unused channels (because they float or spike outside the range) then the unused voltage or current channels at the field connector should be connected in parallel to a valid input channel. As long as the valid channel stays within range, the tied channels will also stay within range. NOTE: For currents within the range of 4—20 mA, only the valid input requires the inclusion of the 250 Ω resistor.
10	Refer to field connector mounting drawing, below. Mount two wired field connectors on analog module with pin 1 positioned at top and field wiring to left.
11	Close module handle.
12	Turn on power to housing if desired. NOTE: If an open circuit occurs when operating in the voltage mode, the input may take several seconds to decay to zero, due to the front-end RC network. If open-circuit detection is required, the module should be operated in the current mode. The addition of the 250 Ω resistor forces the RC network to discharge rapidly.

Field Connector/ Field Connector/Input Circuit Pinout Diagram. Input Circuit

B875–102 High Speed Analog Input, Specifications

Specification The following table provides the specifications for the unit.

Table

B875-102 Specificati	ons	
Description		Fast A/D voltage or current input
Number of Channels B873/B875		Four or eight isolated inputs
Operating Range	Voltage	1—5 Vdc
		0—5 Vdc
		0—10 V
		-5+5 V
		-10-+10 V
	Current	4—20 mA
		0—20 mA
		0—40 mA
		-20-+20 mA
		-40—+40 mA
Impedance	Voltage Mode	>10 M Ω input differentially
		1.5 k Ω with power removed
	Current Mode	250 Ω/input
Resolution		12 bit
Filter		Single Pole dc to 1.0 kHz
Linearity	Error	.05% of full scale over operating temperature range
	Differential	0.0244% of full scale @ 25°C (77°F)
Protection		120 Vac differential input (voltage mode only)
Common Mode	Range	Input voltage plus common mode voltage less than 12 V
	Rejection	>-70 dB, dc to 60 Hz
Isolation	Input to Case	1500 Vac RMS for i minute
	Input to Input	30 Vdc
	Input to OURBUS	1500 Vac RMS for 1 minute
Accuracy	@25°C (77°F)	0.1% of full scale (4 counts)
	Over 0—60°C	0.25% Of full scale (10 counts)
Terminal Connector		AS-8533-004
Repeatability		0.25% of full scale (10 counts) of full scale RMS, constant temperature, no averaging

B875-102 Specificati	ons		
Autocalibration		High/low range points recalibrated during run time	
Power-up Time		5 s maximum	
Warm-up Time		5 s concurrent with power-up)	
Power Required	+5 V	650 mA max, 300 mA typical	
	+4.3 V	975 mA max, 550 mA typical	
	-5 V	0 mA	
Data Format	0000	Power Up	
	8000 Hex	Out of Range	
	0001—4200	Valid–All Ranges	
	9068 Hex	Over Range	
Data Update Period Rate	Four channels	2.4 ms	
	Eight channels	3.0 ms (including diagnostics). No additional time penalty for process or data for out-of-range condition.	

B875-102 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

ANALG 8 CH IN	
Config	
Parameter Name	Value
r MAPPING	WORD (%IW-3X)
L INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	8
► INPUT TYPE	BINARY 🔻
1 : 140 XBP . 3 : B875	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW-3X)	-	
Inputs Starting Address	1	-	
Inputs Ending Address	8	-	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 8 registers input 3x	Mapped as 8 words input %IWx
Input Type	BIN/BCD	BIN/BCD

B875-111 & B877-111 Analog Input

13

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B875-111 and B877-111 Analog Input modules.				
What's in this	This chapter contains the following topics:				
Chapter?	Торіс	Page			
	B875-111 Analog Input, Overview	214			
	B875-111 Analog Input, Module Configuration	216			
	B875-111 Analog Input, Field Connections	220			
	B875-111 Analog Input, Application Example	227			
	B875-111 Analog Input, Calibration	233			
	B875-111 Analog Input, Quick Reference	236			
	B875-111 Analog Input, Specifications	237			
	B875-111 Parameter Configuration	239			
	B877-111 Parameter Configuration	240			
	B877-111, Terminal Numbering and Output Connections	241			

B875–111 Analog Input, Overview

General Characteristics

The B875–111 Analog analog-to-digital (A/D) Input Module (B875) converts input voltage and/or input current ranges into binary data. This module can be configured to accept 8 differential or 16 single ended inputs. When selected for 8 differential inputs, the card is called a B875–111. When selected for 16 single ended inputs, the card is called a B877–111. Refer to the simplified schematic below.

The B875 Analog Input module allows the polling of a wide array of field devices requiring different voltages and different currents based upon a unique application. One can select from five available input voltage ranges on a module-wide basis. The ranges, which are 0 to 5V, 1 to 5V, --5 to 5V, 0 to 10V, and -10 to 10V, are selected by means of four DIP switches on the module configuration switch.

One can select from three available input current ranges, which are 0 to 20 mA, 4 to 20 mA, and -20 to +20 mA.

One can select from four available output formats. The formats, which are standard, elevated, full resolution, and decimal, are selected by means of two DIP switches on the module configuration switch.

One can select either no averaging, or 8, 16, or 32 sample inputs to be averaged to generate each output by means of two DIP switches on the module configuration switch.

The module has eight/sixteen analog inputs and is capable of updates to all channels every 10—20 msecs. The greater than 12-bit resolution and the absolute accuracy of 0.1% at 0—60° C provides precise control of the application.

Simplified Block The following illustration represents the simplified schematic diagram for the B875-

B875–111 Analog Input, Module Configuration

Overview The B875-111 module is shipped from the factory with the 1—5 V range with 0— 4095 output format (standard), one sample averaged, and voltage inputs, 8 channel (B875-111)–i.e., all DIP switches to the right. If necessary, reset the module configuration switch and the five-position DIP switch based upon the application requirements prior to installation. Refer to the illustration of the module configuration switch, below.

Module Configuration Switch with DIP Switches The following illustration shows the module configuration switch and DIP switch settings for the B875–111 module. B875–111 Analog Input Module, Module Configuration Switch and DIP Switch Settings

MODULE CONFIGURATION SWITCH 8-POSITION DIP-SWITCH

TOP OF MODULE

SWITCH TO FUNCTION RELATIONSHIP

$$\begin{split} & \text{SW1} = \text{BIPOLAR}/\text{UNIPOLAR} \\ & \text{SW2} = \text{ALL OTHER RANGES/1-5v \& 4-20MA} \\ & \text{SW3} = \text{OUTPUT FORMAT} \\ & \text{SW4} = \text{OUTPUT FORMAT} \\ & \text{SW5} = \text{NO. OF SAMPLES AVERAGED} \\ & \text{SW6} = \text{NO. OF SAMPLES AVERAGED} \\ & \text{SW7} = 16/8 \text{ CHANNELS} \\ & \text{SW8} = 10V/5V \end{split}$$

Switches	Functions				
SW1	Input Range				
	For Bipolar (10 V, 5 V 20 mA):SW1=L				
	For Unipolar (0-10 V, 0-5 V, 0-20 mA, 1-5 V, 4-20 mA): SW1=R				
SW2	Input Range				
	For Offset (1—5 V or 4—20 mA): SW2=R				
	For No Offset (All other Ranges): SW2=L				
SW3 & SW4	Output Formats (refer to the following table for resolutions)				
	For Standard (0000-4095): both SW3 and SW4=R				
	For Elevated (4096—8191): SW3=L and SW4=R				
	For Full Resolution (Raw Binary): SW3=R and SW4=L				
	For Decimal (0001—9999): both SW3 and SW4=L				
SW5 & SW6	Samples to Averaged				
	For 1 Sample: SW5 and SW6 both R				
	For 8 Samples: SW5=L and SW6=R				
	For 16 Samples: SW5=R and SW6=L				
	For 32 Samples: SW5 and SW6 both L				
SW7	Input Types				
	For 8 Differential (B875):SW7=R				
	For 16 Single Ended (B877): SW7=L				
SW8	Input Ranges				
	For 10 V (10 V or 0—10 V): SW8=L				
	For 5 V (All Others): SW8=R				

Use the following table to determine the functions for each switch.

Output Format	Under Range	Normal Range	Over Range	Resolution	Actual Format
Standard	0000	0000— 4095	4096	12 bits	Raw binary, unsigned
Elevated	4095	4096— 8191	8192	12 bits	Raw binary, unsigned
Full Resolution	Bit 16=1 Bit 15=1	Bit 16=0 Bit 15=0 1—7499	Bit 16=1 Bit 15=0	Bipolar=1/15000 counts Unipolar=1/7500 counts Offset=1/6000 counts	*Raw binary and two flags
Decimal	Bit 16=1 Bit 15=1	Bit 16=0 Bit 15=0 1—9999	Bit 16=1 Bit 15=0	Bipolar=1/1000 counts Unipolar=1/7500 counts Offset=1/6000 counts	Raw binary and two flags 1—9999 counts 1—9999 counts

Output Format The following table provides the output formats and their resolution relationships: **Selection**

*When an under or over range condition exists, the output word contains the applicable flag and the under or out-ofrange value.

Standard output format is raw binary output, 0—4095 counts. Under range is 0000 and over range is 4096.

Elevated output format is raw binary output, 4096—8191 counts. Under range is 4095 and over range is 8192.

Full resolution output format provides the true resolution of the module which depends on the input range.

- Bipolar inputs produce an output of 0001-14,999 counts
- Unipolar inputs produce an output of 0001-7499 counts
- Unipolar and offset inputs produce an output of 0001-5999 counts

In the full resolution format, out-of-range values of 2.4% may be read to the specified accuracy of the module. They can be read in this manner. When an out-of-range condition occurs which is over range the MSB (bit 16) is set to 1. If an under range occurs the second MSB (bit 15) is also set to 1. The remaining 14 bits give the absolute value of the amount over or under range. For example, for a unipolar input of 5.120 volts the output would have bit 16 set to 1. The remaining output bits equaling the raw binary representation of 120 millivolts. Any input above the 0.120 volts in this range willnot be within the specified accuracy of the module. Decimal output format allows scaled outputs to provide 0001—9999 counts full scale. This format does not indicate the true resolution of the module. For bipolar inputs the output is scaled down and for unipolar inputs the output is scaled up. This format also reports out-of-range values in the same manner as the full resolution mode.

Note: For unipolar and unipolar with offset image ranges, the process of scaling the lower resolution output values to the 1—9999 output format creates the possibility of missing codes due to rounding off of numbers in the micro controller.

Note: When applying power to the equipment, or after a reset, the module transfers 4000 Hexadecimal during its internal reset, and initialization time until valid data is ready to be transferred. (4000 Hexadecimal corresponds to the second MSB=1, all other bits=0).

Input SelectionFirst, locate the four access holes on the left side of the module. These holes allow
access to three four-position and one five-position DIP switch.
Next, set switch position 5 (SW5) of the five-position DIP switch found in the bottom
access hole on the left side of the module, to select the input range. This switch must
correspond to switch position 8 (SW8) of the eight-position module configuration DIP
switch. SW5 and SW8 settings must be identical.

Note: For switch SW5, the input ranges are as follows:

- For 10 V (10 V or 0-10 V) place SW5 to the left.
- For 5 V (all others) place SW5 to the right.

B875–111 Analog Input, Field Connections

- **Overview** There are two ways to configure the module to accept current inputs. With eight differential current/voltage inputs the module is called the B875-111. With sixteen single-ended current/voltage inputs the module is called the B877-111.
- **B875-111 field** When configuring the B875-111 for eight differential current inputs, note the channels that will receive these inputs. Current inputs are selected by placing a jumper on the field connector between the positive voltage input and the current input terminal for the appropriate channel. For example, if channel 2 is to receive a current input, a jumper must be made between terminal #7 (CH2) and terminal #6 (Current Input CH2), as shown on the following illustration.

The following illustration represents the simplified schematic diagram for the B875–111 module.

B875-111 Analog Input Module, Current Input Example Drawing

Note: DIP switch accessibility

DIP switches accessible through the side cover are not used in differential mode and should be left in the factory-installed voltage input positions.

Note: Simultaneous current and voltage inputs can exist under the following conditions:

- 1-5 V and 4-20 mA
- 0-5 V and 0-20 mA
- 5 and 20 mA

Connect field-side wiring to proper pins on the field connector. Voltage inputs do not require a jumper on the field connector. Refer to the illustration showing the typical field circuit connections, below.

Note: Open-circuit voltage inputs may drift either positive or negatively. If opencircuit detection is required, a current input should be used. When using voltage inputs, an open circuit can be detected if a large-value resistor (2 M Ω or greater) is placed at the field connector across the positive (+) and negative (-) inputs. The resistor clamps the channel to a small offset voltage (<100 mV) if the field connections are broken.

Typical Field Circuit Connections with Eight Differential Inputs

(1)

 $\widehat{2}$

3

(4)

B877-111 Field Connections

Current inputs are selected by setting the DIP switches accessible through the side cover for each channel to receive an input. The DIP switch places a 250 Ω precision resistor between the positive input and analog returns.

The fifth switch (SW5) on switch bank 4. located on the left side selects the voltage range. The position of this switch must be the same as for module configuration switch SW8. located at the rear of the module.Refer to the label located on the left side of the module, and to the illustration showing the current settings for singleended inputs (B877) below.

Current Settings for Single-Ended Inputs, Diagram (B877)

TOP OF MODULE SWITCH BANK 1	1 2 3 4	SWITCH TO CHANNEL RELATIONSHIP SW1=CH1 SW2=CH2 SW3=CH3 SW4=CH4
SWITCH BANK 2	- 1 - 2 - 3 - 4	SW1=CH5 SW2=CH6 SW3=CH7 SW4=CH8
SWITCH BANK 3	1 2 3 4	SW1=CH9 SW2=CH10 SW3=CH11 SW4=CH12
SWITCH BANK 4		SW1=CH13 SW2=CH14 SW3=CH15 SW4=CH16 SW5=10V/5V
	LEFT RIGHT	

3 4- POSITION DIP SWITCHES AND 1 5-POSITION DIP SWITCH

Switches	Functions		
Switch Bank 1	Current Inputs		
	For Channels 1—4		
	SW1—4=Right Side Down		
Switch Bank 2	Current Inputs		
	For Channels 5—8		
	SW1—4=Right Side Down		
Switch Bank 3	Current Inputs)		
	For Channels 9-12		
	Sw1—4=Right Side Down		
Switch Bank 4	Current Input		
	For Channels 13—16		
	SW1—4=Right Side Down		
Switch Bank 5	Input Ranges		
	For 10 V (V or 0—10V): SW5=Left Side Down		
	For 5 V (All Others): SW5=Right Side Down		

Use the following table to determine the functions for each switch.

Note: DIP switch accessibility

DIP switches accessible through the side cover are not used in differential mode and should be left in the factory-installed voltage input positions.

Step	Action
1	Connect field-side wiring to proper pins on field connector when module is configured for sixteen single-ended inputs. Note: Open-circuit voltage inputs may drift either positive or negatively. If open-circuit detection is required, a current input should be used. When using voltage inputs, an open circuit can be detected if a large-value resistor (2 M Ω or greater) is placed at the field connector across the positive (+) and negative (-) inputs. The resistor clamps the
2	channel to a small offset voltage (<100 mV) if the field connections are broken. Reinstall any module temporarily removed.
3	When using key pins (provided with housing shipment), install them above and below housing slot selected for this module's installation.
4	Insert module into housing firmly but carefully, seating edge connector in backplane.
5	Secure module to housing using captive slotted mounting screws at top and bottom of module front panel.

Use the following table to field connect the B77-111 module. Refer to typical field circuit connections, single-ended inputs (B877) diagram, below.

Typical Field Circuit Connections, Single-Ended Inputs (B877) Diagram

(3) WHEN USING SHIELDING FIELD CIRCUIT WIRES, GROUND SHIELD AT ONE END ONLY.

B875–111 Analog Input, Application Example

Setup Configuration Switch Pack

The B875–111 can be configured to accept 8 differential or 16 single ended inputs. When selected for 8 differential inputs, the card is called a B875–111. When selected for 16 single ended inputs, the card is called a B877–111.

This selection is made by switch 7 on the configuration switch pack found at the rear of the module. SW7 in the left position is equal to 16 inputs, in the right position it is equal to 8 inputs.

In addition to selecting the number of inputs, you also select voltage range, output format, polarity, offset and number of samples. Refer to the Installation Instructions and the DIP-switch chart on the left side of the module for details.

For a quick start setup, use the following settings to interface a 0 to +10V input signal. For the following input parameters:

- 0—10 V input
- 0 to full scale output format
- One sample
- Eight differential inputs

Set the switch settings as follows:

- SW1, SW3, SW5, SW7=right
- SW2, SW4, SW6, SW8=left

Input Type Selection (Voltage or Current)

If configured as a B875 (8 differential inputs), current inputs (4-20mA) are selected

by placing a jumper at the field connector between the positive voltage input and the

If configured as a B877 (16 single ended current inputs), input type is selected by the switches on the left side of the module. There is one switch for each of the 16 inputs. This switch places a 250 ohm precision resistor between the plus input and analog return. External jumpers are not used and must be removed. The left position is equal to voltage input, and the right position is equal to current input. The fifth switch on switch bank 4 (left side) selects the voltage range for both B875 and B877 operations. This switch must correspond to switch 8 of the configuration switch bank (at rear of module). The left position of SW5 is equal to 10 volts, and the right position is equal to 5 volts. SW8 must be in the same position as SW5. For the 0—10V input signal example, set all the input switches to the left (down or towards the numbers).

I/O Mapping If setup for 8 differential inputs, the module type will be a B875 and requires 8 consecutive 3xxxx binary registers. If setup for 16 single ended inputs, the module type will be a B877 and require 16 consecutive 3xxxx binary registers.

Note: Upon power-up the module's active indicator flashes rapidly showing that communication with the programmable controller has been established but, that the input data being returned is not valid. (4000 Hexadecimal is sent to the controller during the initialization time). When module initialization is complete, and valid input data is being transferred, the indicator is either steady on, or flashing slowly when any input is out-of-range.

Wire Inputs

The B875–111 and B877–111 require a high-density connector, part number AS– 8535–000. Refer to the left side of the module for pinouts. Refer to the following illustration.

0-10 V Input Example, Diagram.

ModuleThe B875–111 and B877–111 will perform an analog to digital conversion on the
inputs. The resolution of the analog to digital conversion is dependent upon the input
range and output format selected with the configuration switch bank.
Using a Modicon programmer, call up the appropriate registers assigned in the I/O

Using a Modicon programmer, call up the appropriate registers assigned in the I/O Map. Vary the input signal and check that the register content varies correctly. Refer to the following table for the guick-start example.

Voltage	Value	
@ 0 V	3xxxx=001 (decimal)	
@ 5 V	3xxxx=3750	
@ 10 V	3xxxx=7500	
@ 11 V	3xxxx > 9999 (decimal)*	
	*The active light indicator should be flashing, indicating the input is out of range.	

Sample Averaging Input Data

The output data can be processed by a low-pass digital filter in the module to average out and remove any low-frequency noise in the converted input analog data. The digital filter algorithm is:

$$Y_n = Y_{n-1} + \frac{X_n - Y_{n-1}}{2N}$$

where

Xn = Current input data sample

Yn = New output filter data value

Yn-1 = Previous output filter data value.

The digital filter algorithm approximates a classical exponential response

characteristic with both the cut-off frequency, F_c , and the time constant, T_c , related to the number of samples to be averaged, N, and the throughput time, T. The "N" is user selected (8,16,32) with DIP-switches. Throughput time, "T", equals 10ms for the B875–111, and 20ms, for the B877–111.)

$$T_{c} = 2 \times N \times T \qquad (s)$$

$$F_{c} = \frac{1}{2 \times Pi \times T_{c}} = \frac{.08}{N \times T} \qquad (Hz)$$

where Pi = 3.141

As with any filter, the user must establish what time constant and cut-off frequency is suitable for the specific application. Below is a reference table that approximates the digital filter characteristics for various user settings.

Digital Filter Approximates (B875-111)

Throughput Time (T)	Number of Samples (N)	Cut-off Frequency (F _c)	Time Constant (T _c)
10 ms	8	1 Hz	160 ms
10 ms	16	0.5 Hz	320 ms
10 ms	32	0.25 Hz	1640 ms

Digital Filter Approximates (B877-111)

Throughput Time (T)	Number of Samples (N)	Cut-off Frequency (F _c)	Time Constant (T _c)
20 ms	8	0.5 Hz	320 ms
20 ms	16	0.25 Hz	640 ms
20 ms	32	0.125 Hz	1280 ms

Approx. step settling-time to 63% of final value = $1 \times T_c$ Approx. step settling-time to 99% of final value = $4.5 \times T_c$ Approx. step settling-time to 99.9% of final value = $6.8 \times T_c$

Note: As the scan time increases, the average response time may decrease as viewed in ladder logic.

Application In many applications, analog signals are provided to operators in units (points, gallons per second, degrees C, feet per minute, etc.) via LED displays, CRT monitors or report printouts. An analog input can be scaled to engineering units. To illustrate the technique, assume that the0—10 V signal in the quick-start example represents a temperature from -40—+140°F. Refer to the following illustration showing the signal to temperature relationship. Signal to Temperature Relationship Diagram

- What is the engineering unit range? In this example it is 140 (-40) =180
- Divide this number by 7500 using a calculator. 180/7500 = .024
- Multiply this number by 10,000 to obtain the multiply block constant of 240.
- Multiply the analog input by 240. The high-order result register will contain the range.
- Add or subtract the Y intercept (-40 in this example) to obtain the answer.

Scaled Value from Analog Signal, Diagram

Note: The logic shown is used to generate the scaled value in register 40020 from the analog signal in 3001. For example: 30001 = 3800; $40020 = 0051^{\circ}F$

Note: Only the high-order result of the multiplication is used, and no compensation for round-off is used in this example.

B875–111 Analog Input, Calibration

Calibration Tools

The analog input module is calibrated at the factory prior to shipment. To ensure the module's accuracy, the trim-pot should be calibrated regularly on a yearly interval. The following tools and materials are needed to calibrate an analog input module:

- A precision digital readout voltmeter with an accuracy of 0.0001 V on a 10 V scale.
- A 1/8-inch bit, thin-blade screwdriver.
- A 1/4-inch Phillips-head screwdriver.
- An adhesive (such as Loctite or Glyptol) to secure trim-pot adjustment screws.

Calibration Procedure Use the following table to calibrate the module.

Step	Action	
1	Remove two screws and label located on front-panel of analog input module to allow access to trim pot. Note: The trim pot adjusts the total magnitude of the range (full scale). Refer to trimpot location diagram, below.	
2	Open analog input module handle to expose connectors and terminals.	
3	Connect digital voltmeter (DVM) minus lead to voltage reference - (terminal number 38) and plus lead to voltage reference + (terminal number 39). Refer to voltmeter connection diagram, below. Note: Field wiring may remain connected during calibration. Five minutes of warm-up is sufficient to attain temperature stability.	
4	Adjust reference voltage trim pot for an indication of 4.500 V 0.0001 V.	
5	Secure trim pot in place with adhesive.	
6	Disconnect voltmeter, return connections to their pre-calibration state, close module handle. Replace front label removed in step 1, above.	

Trim Pot Location Diagram Trim Pot Location Diagram.

Voltmeter Voltmeter Connection Diagram.

B875–111 Analog Input, Quick Reference

Overview To set up the analog input module properly, an eight-position DIP-switch must be set together with SW5 of a five-position DIP switch located on the left side of the module. These switches determines the input range, output format, number of samples to be averaged, and the types of inputs. DIP-Switch Configuration Parameters. Table

DIP-Switch Configuration Parameters		Eight-P	Eight-Position Switch		h Five-Position Switc	
Input Range		SW1	SW2	SW8	SW5	
	5 V, 20 mA	L	L	R	R	
	0—5 V, 0—20 mA	R	L	R	R	
	1—V, 4—20 mA	R	R	R	R	
	10 V	L	L	L	L	
	0—10 V	R	L	L	L	
Outp	out Format	SW3	SW4			
	Standard (0-4096)	R	R			
	Elevated (4096-8192)	L	R			
	Variable (0 to full resolution)	R	:			
	Decimal (0—10,000)	L	L			
Samples to be Averaged		SW5	SW6			
	1 or no averaging	R	R			
	8	L	R			
	16	R	L			
	32	L	L			
Types of Inputs		SW7				
	8 Differential	R				
	16 Single-ended	L				

For example, assume that the following values are desired: 5 V input; 0—10,000 counts output; no averaging; differential inputs. Set the switches as follows: **Module Configuration Switch** SW1-4 = L SW5-8 = 8**Switch Bank 4**

SW1CH Bal

B875–111 Analog Input, Specifications

Specification	
Table	

The following table provides the specifications for the unit.

B875-111 Specifications

Analog Inputs/ I/O mapped as Module B875-111		Eight differential			
I/O mapped as B877-111		16 Single-ended			
Input Ranges	Voltage	1—5 Vdc			
		0—5 Vdc			
		0—10 V			
		-5—+5 V			
		-10—+10 V			
	Current	4—20 mA			
		0—20 mA			
		-20—+20 mA			
Input Analog Filter		Single pole low pass, with -3 dB cut-off frequency at 48 Hz 10%			
Input Resistance	Current Mode	250 Ω, 0.05%			
	Voltage Mode	Within range > 10 MW, outside range 10,000 Ω			
Input Resistance Differential Inputs (No power)		20kΩ /channel			
	Single-ended Inputs	10 kΩ/channel			
Input Protection	Normal Mode	120 V RMS differential input			
	Common Mode	120 V RMS			
Throughput (T)	eight channels	10 ms without input sampling			
	16 channels	20 ms without input sampling			
Over Current Protect	ion	Up to 30 mA			
Common Mode Rang	je	2 V for 10 V, 7 V for 5 V			
Rejection		-40 dB typical, dc to 60 Hz			
Input Isolation Input to OURBUS		1500 Vac RMS for 1 minute			
	Input to Case	1500 Vac RMS for 1 minute			
	Input to Input	25 Vac			
Accuracy		0.1% absolute accuracy over temperature range			

B875-111 Specifications				
Conversion Resolution	All ranges	>12 bits		
	Bipolar	1 part in 15,000		
	Unipolar	1 part in 7,500		
	Unipolar with offset	1 part in 6,000		
Linearity Error		0.05% of full scale over the operating range		
Differential	Nonlinearity	0.006% of full scale over the operating range		
	Repeatability	0.025% of full scale RMS, constant temperature, no averaging		
Output Range		Four selectable output formats		
Output Averaging		Options are: N = 8, 16, and 32 samples to be averaged		
Output Digital Filter, F _c		Single pole low pass with cut-off frequency dependent upon the number of averaged samples, N and T		
Out-of-range Data		2.4% above and below range		
Power Required	+5 V	500 mA		
	+4.3 V	900 mA		
	-5 V	0 mA		
Terminal Connector		AS-8535-000		

B875-111 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

ANALG 8 CH IN		
Config		
Parameter Name	Value	
r MAPPING	WORD (%IW-3X)	▼
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	8	
· INPUT TYPE	BINARY	▼
		_
1 : 140 XBP 3 : B875		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW-3X)	-	
Inputs Starting Address	1	-	
Inputs Ending Address	8	-	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 8 registers input 3x	Mapped as 8 words input %IWx
Input Type	BIN/BCD	BIN/BCD

B877-111 Parameter Configuration

Parameter and **Default Values**

Para

rameter Co	onfiguration	Window
------------	--------------	--------

ANALOG 16 CH IN	
Config	
Parameter Name	Value
MAPPING	WORD (%IW-3X)
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	16
► - · INPUT TYPE	BINARY 🔻
· · · · · · · · · · · · · · · · · · ·	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW-3X)	-	
Inputs Starting Address	1	-	
Inputs Ending Address	16	-	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 16 registers input 3x	Mapped as 16 words input %IWx
Input Type	BIN/BCD	BIN/BCD

B877–111, Terminal Numbering and Output Connections

Terminal Numbering and	The following diagram shows terminal numbering and output connections for the the B877-111 module.							
Output Connections	Case GND —	1		21	— NC			
	NC —	2		22	— NC			
	I/P 1+	3		23	I/P 9+			
	I/P 2+	4		24	— I/P 10+			
	I/P 1,2	5		25	—— I/P 9,10-			
	NC —	6		26	— NC			
	I/P 3+	7		27	— I/P 11+			
	I/P 4+	8		28	— I/P 12+			
	I/P 3,4	9		29	— I/P 11,12-			
	NC —	10		30	— NC			
	I/P 5+	11		31	— I/P 13+			
	I/P 6+	12		32	—— I/P 14+			
	I/P 5,6	13		33	—— I/P 13,14-			
	NC —	14		34	— NC			
	I/P 7+	15		35	—— I/P 15+			
	I/P 8+	16		36	—— I/P 16+			
	I/P 7,8	17		37	—— I/P 15,16-			
	NC —	18		38	V Ref +			
	NC —	19		39	— V Ref -			
	NC —	20		40	— Case GND			
	L		JL					

B875–200 Configurable A/D Input

14

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B875–2 Configurable A/D Input module.		
What's in this	This chapter contains the following topics:		
Chapter?	Торіс	Page	
	B875–200 Configurable A/D Input, Overview	244	
	B875–200 Configurable A/D Input, Input Pack Insertion	246	
	B875-200 Configurable A/D Input, Module Configuration	247	
	B875-200 Configurable A/D Input, Field Connections	250	
	B875–200 Configurable A/D Input, Calibration	258	
	B875-200 Configurable A/D Input, Available Input Packs	261	
	B875-200 Configurable A/D Input, Input Pack Simplified Schematics	265	
	B875–200 Configurable A/D Input, Specifications	271	
	B875-200 Parameter Configuration	273	

B875–200 Configurable A/D Input, Overview

General The B875–200 Configurable A/D Input Module converts a variety of signal sources: thermocouple, RTD, strain gauge/load cell, voltage and current input ranges into binary data. When selected for eight channels, the module is displayed in the I/O map as a B875–200; when selected for four channels, it is displayed in the I/O map as a B873-200.

The module provides the capability to poll a wide array of field devices requiring different signal sources based upon the application selected. Selection may be made from more than 48 available input packs, with any mix per module being acceptable.

Note: Third-party Input Packs Performance is not guaranteed with third-party 5B type packs. When using thirdparty packs, contact the manufacturer for support.

An eight-position DIP switch is used to select from one to eight input channels per module. In addition, a two-position jumper is used to select either 0, 2, or 4 samples to be averaged per input. Averaging helps reduce the impact of spurious noise on the input.

Some application examples include food processing, press operating, chemical processing, painting, and foundry casting.

The module has four/eight analog inputs and is capable of updates to all eight channels every 4 ms. The 12-bit resolution for all ranges, and the absolute accuracy is dependent on the input pack type. This allows for fast and precise control of the application.

Note: This module requires two slots.

B875–200 Configurable A/D Input, Input Pack Insertion

Input Pack	Use th	Use the following procedure to insert the required input pack.				
Insertion Procedure	Step	Action				
	1	Remove channel pull-off tabs that correspond with desired input pack placement.				
	2	Insert input packs into right side of module corresponding to desired channels. Align input pack so that Phillips-head screw is on top and 14 leads are at bottom.				
	3	Tighten Phillips-head screw. Note: When using either a AS–5B32001A or AS–5B32002A current input pack, a fusible resistor must also be inserted into the board. The proper fusible resistor (Modicon part # AS–0418–000) comes with the current input pack. Note: Always insert the fusible resistor before inserting the input pack. If the fusible resistor is rectangular, ensure that the side with two leads is next to the input pack. Note: Never place the fusible resistor between adjacent channels. This can be detected when the fusible resistor hides the CH on the CHANNEL label on the board.				
	4	Locate write-on label plate (Modicon part # AS–157A–000) shipped with module. Ensure that input pack catalog numbers and input register numbers for each input pack installed are clearly identified on label.				

B875–200 Configurable A/D Input, Module Configuration

Setting the DIP Switch	Use the following procedure to set the eight-position DIP switch.					
	Step	Action				
	1	Locate eight-position DIP switch on rear of module. Note: These DIP switches are used to select the desired number of channels, from 1—8.				
	2	Set DIP switches based upon intended application prior to installation. Refer to module configuration DIP switch settings diagram, below, and to label located on left side of analog input module. Note: The analog input module is shipped with channel 1 ON, B873), DIP switch (SW1) set to ON. The module is I/O mapped as a B873 when only channels 1—4 are in use. The module is I/O mapped as a B875 when more than 4 channels are in use.				
	3	Ensure all unused DIP switches are kept to the right.				

the input packs correspond with the DIP switch settings.

aging tion	Action			
1	Locate access hole on left side of module. Note: This hole allows access to three leads and a two-position jumper, that selects the number of samples to be averaged per input channel: 0, 2, 4 samples to be averaged.			
2	Select either 0, 2 or 4 samples to be averaged.			
3	Set desired averaging prior to installation. Refer to jumper settings diagram, below, and label located on left side of module. Note: The module is shipped with the jumper set for four samples. Module Configuration DIP Switch Settings, Diagram Jumper located below side access hole determines number of samples to average no average 2 samples 2 samples			
	4 samples			
	Jumper on one leg only			
	Note: Sample averaging helps reduce the impact of serious noise on the input.			

B875–200 Configurable A/D Input, Field Connections

General

The module may be wired to accept the following types of packs: current input type; voltage input type; RTD input type; linear thermocouple input type; strain gauge/load cell input type. These input types and their connections are discussed below. Refer to the diagram showing the typical field circuit connections for current inputs, below. Typical Field Circuit Connections for Current Inputs, Diagram

Note: A precision 20 Ω fusible resistor must be installed in each current input channel. The fusible resistor is supplied with each 4 - 20 mA or 0 - 20 mA input pack. The B875-200 may be installed in either the sinking or sourcing configuration.

Each channel is floating. Should you need a ground, you may tie one side of field wiring to chassis ground or use shield wiring with shield tied to chassis ground. Refer to note

Low Bandwidth Current Inputs (AS-5B32) Select the channels to be used for current input packs. Current inputs are selected by inserting the input pack, together with a fusible resistor beside the pack, for the appropriate channel. Refer to the typical field circuit connections for current inputs diagram, above, while connecting the field-side wiring to the proper pins on the field connector.

Note: All input packs provide 1500 Vac/2500 Vdc isolation from bus to field wiring. Since any floating inputs may be exposed to static charges as high as 15 kV, connect one of the signal input leads to chassis ground either directly or through a resistor in the range of 1kW—10MW. Use the chassis ground at terminals 1, 2, 39 or 40. If the signal source used with an input has a dc signal path to chassis ground, no additional path is required at the B875 end of the field wiring.

Note: Channels are set independently. Any of the pack types identified above can be intermixed.

EXCITATION +

Low and Wide Bandwidths (AS–5B30/31 and AS–5B40/41) Voltage Inputs	Note the channels to receive the voltage inputs. Voltage inputs are selected by inserting the input pack for the appropriate channel. Refer to the following drawing, and connect field-side wiring to the proper pins on the field connector. Typical Field Circuit Connections for Voltage Inputs, Diagram				
FUNCTION			TERMINAL NUMBER		
CHASSIS G CHASSIS G VIN HIGH VIN LOW EXCITATION	ROUND	CHANNEL #1 CHANNEL #1 CHANNEL #1	1 2 3 4 5	VOLTAGE SIGNAL SOURCE	

CHANNEL #1

NOTE: VOLTAGE WIDE BANDWIDTH INPUT PACKS ARE SIGNIFICANTLY MORE SENSITIVE TO NOISE ON INPUT LINES. LOW BANDWIDTH PACKS ARE RECOMMENDED FOR GENERAL PURPOSE INPUT VOLTAGE USAGE.

Note: The shield-type shown is recommended. One side of the signal source may be connected to chassis ground when using twisted pair wiring.

6

Note: Channels are set independently. Any mixture of current, voltage, RTD, linear thermocouple, or strain gauge/load cell may be used as inputs.

RTD (AS–5B34) Note the channels designated to receive RTD inputs. RTD inputs are selected by inserting the input pack for the appropriate channel. Refer to the diagram below and connect the field-side wiring to the proper pins on the field connector. Typical Field Circuit connections for RTD Inputs. Diagram

Note: The shield-type shown is recommended. One side of the signal source may be connected to chassis ground when using twisted pair wiring.

Note: Channels are set independently. Any mixture of current, voltage, RTD, linear thermocouple, or strain gauge/load cell may be used as inputs.

Linear Thermocouple (AS-5B47)

Note the channels designated to receive linear thermocouple inputs. Linear thermocouple inputs are selected by inserting the input pack for the appropriate channel. Refer to the diagram below and connect the field-side wiring to the proper pins on the field connector.

Typical Field Circuit Connections for Linear Thermocouple Inputs, Diagram

NOTE: THERMOCOUPLE MUST BE OF THE TYPE DESIGNATED BY THE DASH NUMBER OF THE AS-5B47 INPUT PACK IN USE. COLD JUNCTION COMPENSATION IS DONE BY A TEMPERATURE SENSOR LOCATED IMMEDIATELY BEHIND THE CONNECTOR BLOCK.

Note: The shield-type shown is recommended. One side of the signal source may be connected to chassis ground when using twisted pair wiring.

Note: Channels are set independently. Any mixture of current, voltage, RTD, linear thermocouple, or strain gauge/load cell may be used as inputs.

Strain Gauge/
Load Cell, 0—+5Note the channels designated to receive strain gauge/load cell inputs. Strain gauge/
load cell inputs are selected by inserting the input pack for the appropriate channel.
Refer to the diagram below and connect the field-side wiring to the proper pins on
the field connector.
Typical Field Circuit Connections for Strain Gauge/Load cell Inputs

HALF BRIDGE CONNECTION

FULL BRIDGE CONNECTION

NOTE: CONNECTION MUST BE SUCH THAT STRAIN IN NORMAL DIRECTION OF APPLICATION RESULTS IN A POSITIVE OUTPUT VOLTAGE APPLIED TO VIN HIGH. WIRING TO PINS 5 AND 6 MAY BE REVERSED IF OUTPUT IS NEGATIVE.

Note: The shield-type shown is recommended. One side of the signal source may be connected to chassis ground when using twisted pair wiring.

Note: Channels are set independently. Any mixture of current, voltage, RTD, linear thermocouple, or strain gauge/load cell may be used as inputs.

Securing the Module

Use the following procedure to secure the module.

Step	Action
1	Reinstall any module temporarily removed
2	When using key pins (provided with housing shipment), install them above and below housing slot selected.
3	Carefully insert module into housing firmly, seating edge connector in backplane.
4	Secure module to housing using captive slotted mounting screws at top and bottom of module's front panel.
5	Locate write-on label plate (Modicon Part No. AS-157A-000). Write input pack catalog numbers and input register numbers for each installed input pack.
6	Insert write-on label plate on right side of installed module. Using two standard screws supplied, tighten them into upper and lower portions of housing slot as shown in following diagram.

Note: Ensure that all input packs are removed prior to returning module to Modicon for repair.

B875–200 Configurable A/D Input, Calibration

General

The analog input module is calibrated at the factory prior to shipment. To ensure the module's accuracy, the trim-pot should be calibrated regularly on a yearly interval. The following tools and materials are needed to calibrate a configurable A/D input module:

- A precision digital readout voltmeter with an accuracy of 0.0001 V on a 10 V scale.
- A 1/8-inch bit, thin-blade screwdriver.
- A 1/4-inch Phillips-head screwdriver.

Note: Calibration is not recommended for Analog Current, Low Bandwidth, 4—20 mA (AS–5B32001A) type input packs because of their reduced accuracy

Calibration of a given channel involves calibration of all eight channels of this module. There is no provision to calibrate a particular channel. Therefore, calibration can be performed with any one channel with any type of input pack. Calibration does require the calibration signals to pass through an input pack.

Note: Improper Calibration

If the particular input pack used in calibration is out of calibration, then all B875 modules calibrated with this input pack will be improperly calibrated.

Location of Trim Pot, Diagram

Use the following procedure to calibrate the module. The input pack used in this procedure is used only as an example. A five-minute warm-up time is recommended prior to calibration.

Step	Action
1	To access both trim pots, remove two screws and label located on front panel of module, as shown on location of trim-pot diagram, above. Note: The top trim-pot adjusts the total magnitude of the range (full scale). The bottom trim-pot adjusts the zero offset scale.
2	Open module handle to expose connectors and terminals.
3	Install an input pack in any channel, and connect an appropriate signal source to that channel. Refer to voltmeter connections diagram, below.
4	Apply input signal to selected channel which represents zero signal (zero volts when using Analog, V input pack, Low Bandwidth, 0 to +10V (AS5B31003A). On programming panel observe input from B875 for selected channel. Adjust zero cal control (R29) as required to read 0000.
5	Apply input signal that results in output between 80 to 90% of full scale. Use 9.375 V if calibrating with an Analog, V input pack, Low Bandwidth, 0 to +10V (AS 5B31003A). Resultant reading should be set for 0F00 Hex, or 3840 decimal with full scale calibration control (R57).
6	Repeat previous two steps until readings are correct at both zero and near-full-scale points.
7	After calibration is complete, disconnect voltmeter, return connections to their original state, close module handle, and replace front label that covers trim-pot.

Voltmeter Connections Diagram

B875–200 Configurable A/D Input, Available Input Packs

General

The module accepts up to eight input packs of any mix. Six categories are available

- Voltage, low bandwidth
- Current, low bandwidth
- RTD
- Strain gauge
- Voltage, wide bandwidth
- Linear thermocouple

Refer to the following tables for the desired input range, output range, and part number required for the intended application.

Note: 5B type third party packs When using third party packs, contact the manufacturer for support.

Note: Input packs are issued as revision level A's, denoted by the last item of the part number, for example, (AS–5B30001A). Changes will be noted by higher revision levels.

Note: The usable output range for all AS–5BXX input packs is 0-+5 V when used with this module.

AS-5B31003A

AS-5B31004A

AS-5B31005A

AS-5B31006A

0— +10 V

-1—+1 V

-5— +5 V

-10— +10 V

Low Bandwidth (4 kHz) Analog	The following table presents the part numbers and input ranges for the available low bandwidth analog voltage input packs.			
Voltage Input Packs	Part Number	Input Range		
Facks	AS-5B30001A	0—10 mV		
	AS-5B30002A	0—50 mV		
	AS-5B30003A	0—100 mV		
	AS-5B30004A	-10-+10 mV		
	AS-5B30005A	-50—+50 mV		
	AS-5B30006A	-100—+100 mV		
	AS-5B31001A	0—1 V		
	AS-5B31002A	0—5 V		

Low Bandwidth (4 kHz) Analog Current Input Packs

The following table presents the part numbers and input ranges for the available low bandwidth analog current input packs.

Part Number	Input Range
AS-5B32001A	4—20 mA
AS-5B32002A	0—20 mA

Note: Each current input pack (4-20 mA) comes with a fusible resistor that must be inserted in addition to the input pack.

Low bandwidth (4k Hz) RTD Input Packs

The following table presents the part numbers, types, and input ranges for the available low bandwidth RTD input packs.

Part Number	Туре	Input Range
AS-5B34P01A	100 Ω Pt	-100— +100°C (-148— +212°F
AS-5B34P02A	100 Ω Pt	0—100°C (32—212°F)
AS-5B34P03A	100 Ω Pt	0—200°C (32—392°F)
AS-5B34P04A	100 Ω Pt	0—600°C (32—1112°F
AS-5B34C01A	100 Ω Cu @ 0°C	0—120°C (32—248°F)
AS-5B34C02A	100 Ω Cu @ 25°C	0—120°C (32—248°F)
AS-5B34N01A	120 Ω Ni	0—300°C (32—572°F)

The following table presents the part numbers and input ranges for the available wide bandwidth strain gauge/load cell input packs.

(10 kHz) Strain Gauge/Load Cell Input Packs

Wide Bandwidth

Part Number	Input Range
AS-5B38002A	3 mV/V, Full Bridge
AS-5B38004A	3 mV/V, Half Bridge
AS-5B38005A	2 mV/V, Full Bridge

Note: Isolated strain gauge input to 10 kHz bandwidth, all have 10.0 V excitation for bridges with resistance range of 300W to 10kW.

Wide Bandwidth (10 kHz) Analog	The following table presents the part numbers and input ranges for the available wide bandwidth analog voltage input packs.			
Voltage Input Packs	Part Number	Input Range		
1 dens	AS-5B40001A	0—10 mV		
	AS-5B40002A	0—50 mV		
	AS-5B40003A	0—100 mV		
	AS-5B40004A	-10— +10 mV		
	AS-5B40005A	-50— +50 mV		
	AS-5B40006A	-100— +100 mV		
	AS-5B41001A	0—1 V		
	AS-5B41002A	0—5 V		
	AS-5B41003A	0—10 V		
	AS-5B41004A	-1—+1 V		

Note: Wide bandwidth input packs are only used for high-speed applications. They are more susceptible to external noise levels, and require careful routing and shielding of input signal leads.

Linear Thermocouple **Input Packs**

AS-5B41005A

AS-5B41006A

-5— +5 V

-10— +10 V

The following table presents the part numbers, types, and input ranges for the available linear thermocouple input packs.

Part Number	Туре	Input Range
AS-5B47J01A	J	0—760°C (32—1400°F)
AS-5B47J02A	J	-100— +300°C (-148—572°F)
AS-5B47J03A	J	0—500°C (32—932°F)
AS-5B47K04A	К	0—1000°C (32—1832°F)
AS-5B47K05A	К	0—500°C (32—932°F)
AS-5B47T06A	Т	-100— +400°C (-148—752°F)
AS-5B47T07A	Т	0—200°C (32—392°F)
AS-5B47E08A	E	0—1000°C (32—1832°F)
AS-5B47R09A	R	500—1750°C (932—3182°F)
AS-5B47S10A	S	500—1750°C (932—3182°F
AS-5B47B11A	В	500—1800°C (932—3272°F)

B875–200 Configurable A/D Input, Input Pack Simplified Schematics

Typical Analog Current (5B32)

The typical analog current (5B32) schematic diagram is shown below.

Typical RTDThe typical RTD (5B34) schematic diagram is shown below.(5B34) SimplifiedSchematicSchematicDiagram

Typical Strain The typical strain gauge/load cell (5B38) schematic diagram is shown below. gauge/Load Cell (5B38) Simplified Schematic Diagram ANTI-ALIASING FILTER SIGNAL +EXC ≪ ISOLATION ACTIVE LPF 3-POLE -0 +IN VOUT ~ ഹ

лŦ

 $\overline{}$

PROT EXC SOURCE

 $\overline{\mathbf{x}}$

POWER ISOLATION

3||8

RECT & FILTER

P.S.

POWER

OSC.

I/O COMM

READ EN (0)

+5V

PWR COMM

PROT

-0 -IN

0

-EXC

TERM BLOCK ~

←

Typical Linear The typical linear thermocouple (5B47) schematic diagram is shown below. **Thermocouple**

B875–200 Configurable A/D Input, Specifications

Specification The following tables provides the specifications for the unit. **Table**

B875-200 Specific	ations			
Analog Channels	B873-200 in I/O Map	Four		
	B875-200 in I/O Map	Eight		
Voltage Range		Varies with selected input pack		
Current Range				
Thermocouple Typ	es			
RTD Types				
Strain Gauge/Load	l Cell Types			
Input Filter		Three pole or more low pass, with -3dB cut-off frequency of 4 Hz, 10% on low-band units, 10 kHz 10% on wide bandwidth units		
Input Resistance	Current Mode	20 Ω		
	Voltage Mode	Refer to voltage mode table, below		
Input Protection No	ormal Mode	All input packs can withstand 240 V RMS without damage, however, the fusible resistor used with the current input packs will be destroyed by overcurrent conditions		
Note: Input over ra	inge or under range	on an input pack will not produce reading errors on adjacent channels in excess of 1 count.		
Common Mode		Each input pack can withstand 1500 V RMS		
Rejection		In excess of 140 dB for all input packs except AS-5B40 and AS-5B41 which are 80 dB		
Input Isolation	Input to OURBUS	1500 Vac RMS or 2500 Vdc for 1 minute		
	Input to Case	1500 Vac RMS or 2500 Vdc for 1 minute		
	Input to Input	1500 Vac RMS or 2500 Vdc for 1 minute		
Conversion Resolu	ition	12 bits all ranges		
Out of Range Data	L	Four counts above and below range		
Out of Range Error	r (flags)	Refer to out-of-range error table, below.		
Out of Range Error (Flags)		MSB LSB 0000000000000000 Bit 15 14 0 Bits 15 and 14 = Out of range		
Input Averaging		Options are 0, 2, or 4 samples		
Throughput		1.7 ms typical for 4 channels, 4 ms for eight channels maximum		
Power Required	+5 V	550 mA		
	+4.3 V	10 mA		
	-5 V	0 mA		
Terminal Connecto	or	AS-8535-000		

The following table provides the resistance values for the voltage mode for the indicated input pack numbers.

Pack Number	In Range	Power Off and/or Over Range		
AS5B30	5 MΩ	40 kΩ		
AS-5B31	650 kΩ	650 kΩ		
AS-5B40	200 MΩ	40 kΩ		
AS-5B41	650 kΩ	650 kΩ		

The following table provides data on out-of-range errors (flags)

Data Flagged Description	
Not Ready Bit 14 set high (4000 Hex)	
Over Range	Bit 15 set high (800x Hex, x=1—4 bits over range)
Under Range	Bits 14 and 15 set high (c00xHex, x=1—4 bits under range)
Normal Data	Bits 14 and 15 are low, normal data range is 0—4095 (0—1FFF Hex)

The following table provides data on the accuracy of the input packs.

Input Pack	Calibration Accuracy at 25°C	*Accuracy Over Temp 0—60°C	Nonlinearity	Gain Drift***	Offset Drift***
AS–5B30 AS–5B40 Unipolar	0.15	0.73	0.05	.007%/°C	.008%/°C
Bipolar	0.20	0.78	0.05	.007%/°C	.008%/°C
AS–5B31 AS–5B41 Unipolar	0.15	0.62	0.05	.01%/°C	.002%/°C
Bipolar	0.20	0.67	0.05	.01%/°C	.002%/°C
AS-5B32	0.25	0.70	0.05	.01%/°C	.001%/°C
AS-5B47	0.1 1°C**	0.4 2°C	0.05	.007%/°C	1 V%/°C typ
AS-5B38	0.15	0.80	0.05	.010%/°C	1 V%/°C typ
AS-5B34	0.15	2.0	0.05	.01%/°C	.04%/°C
Unless noted all entries are% of full scale.					
*Accuracy = Calibration + gain drift + offset + non linearity for the range 0-60°C ambient.					
**Calibration accuracy for types J, K, T. For types R & S = 4° C. For type B = 6° C.					
***Both gain and offset drift are from 25°C.					

B875-200 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

ANALG 8 CH IN		
Config		
Parameter Name	Value	
r MAPPING	WORD (%IW-3X)	▼
L INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	8	٦
· INPUT TYPE	BINARY	•
1 : 140 XBP 3 : B875		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW-3X)	-	
Inputs Starting Address	1	-	
Inputs Ending Address	8	-	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 8 registers input 3x	Mapped as 8 words input %IWx
Input Type	BIN/BCD	BIN/BCD

800 Series Discrete I/O Modules

IV

Introduction

At a Glance This part provides a detailed description of the 800 Series discrete I/O modules. It includes technical data and wiring information for each module.

What's in this	This part contains the following chapters:
Part?	

Chapter	Chapter Name	Page
15	B802-008 115 Vac Output	279
16	B803-008 115 Vac Input	285
17	B804–116 115 Vac Output	291
18	B804–148 48 Vac Output	297
19	B805-016 115 Vac Input	303
20	B806–032 115 Vac Output	309
21	B806–124 24 Vac Output	317
22	B807-132 115 Vac Input	323
23	B808–016 230 Vac Output	331
24	B809–016 230 Vac Input	337
25	B810–008 115 Vac Isolated Output	343
26	B814–108 Relay Output	349
27	B816 Isolated Output	355
28	B817-116 and B817-216 115/230 Vac Isolated Input	357
29	B818 24 Vac Output	365
30	B819–232 230 Vac Input	371
31	B820–008 10–60 Vdc Output	377
32	B821–108 10—60 Vdc Input (True High)	383
33	B824–016 24 Vdc Output (True High)	389
34	B825–016 24 Vdc Input (True High)	395
35	B826–032 24 Vdc Output (True High)	401
36	B827–032 24 Vdc Input (True High)	403
37	B828–016 5 V TTL Output	409
38	B829–116 Fast Response 5 V TTL Input	415
39	B832–016 24 Vdc Output (True Low)	421
40	B833–016 24 Vdc Input (True Low)	
41	B836-016 12-250 Vdc Isolated Output	433
42	B837–016 24 Vac/Vdc Input (True High)	
43	B838–032 24 Vdc Output (True High)	445
44	B840–108 Relay Output	451
45	B842–008 Reed Relay Output	457
46	B849–016 48 Vac/Vdc Input (True High)	463

Chapter	Chapter Name	Page
47	B853–016 115 Vac/125 Vdc Input (True High)	469
48	855–016 Intrinsically Safe Input	475
49	B862–001 Register Output	485
50	B863-032 Monitored 24 Vdc Input	493
51	B863–132 24 Vdc Input	499
52	B864–001 Register Output	507
53	B865–001 Register Input	515
54	B868–001 Register Output	525
55	B869–002 Register Input	535
56	B881–001 Latched 24 Vdc Input	545
57	B881–508 125 Vdc Output	553
58	B882-032 24 Vdc Diagnostic Output and B818 20-28 Vac Discrete Output	559
59	B882-116 24 Vdc Output	571

B802-008 115 Vac Output

This chapter contains the following topics:

15

At a Glance Purpose This chapter

This chapter describes the functional and physical characteristics of the B802–008 115 Vac Output module.

What's in this Chapter?

Торіс	Page
B802-008 115 Vac Output, Overview	280
B802-008 115 Vac Output, Field Connections	281
B802–008 48 Vac Output, Specifications	282
B802-008 Parameter Configuration	283

B802-008 115 Vac Output, Overview

General
CharacteristicsThe B802–008 115 Vac Output Module converts logic signals used within the PLC
into eight independent 115 Vac outputs. Each output is capable of driving a relay,
pilot lamp, motor starter, solenoid, or any other load up to 2.0 A.
The B802–008 is capable of handling a total continuous current of 12 A. The module
uses triac switches to control loads connected to an external power source. These
switches are designed to withstand the high surge currents typical of industrial
loads.

SimplifiedThe module's eight outputs are separated into four groups of two outputs each. AnSchematicLED indicator lights when an output is ON.Following is a simplified schematic of the B802–008 115 Vac output module.

B802–008 115 Vac Output, Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Output Connections The following diagram shows terminal numbering and output connections for the the B802–008 module.

B802-008 48 Vac Output, Specifications

Specification Table

The following table provides the specifications for the unit.

B802-008 Specifications		
Description		115 Vac Output
Number of Points		8
Operating Voltage		80—130 Vac continuous /47—63 Hz
Number of Groups		4
Outputs/group		2
ON Current	Maximum/point	2 A continuous
	Maximum/module	12.0 A
Surge Current		50 A (max)1 cycle/circuit
ON Voltage Drop		1.3 V @ 2.0 A
Maximum OFF	Leakage Current	3 mA @ 115 Vac
	Maximum ON Current	50 mA @ 115 Vac
Maximum Response Time	OFF→ON	8.3 ms @ 60 Hz
	ON→OFF	8.3 ms @ 60 Hz
dv/dt		100 V/s
	Commutating	5 V/s
Power Required	+5 V	76 mA
	+4.3 V	240 mA
	-5 V	0 mA
Terminal Connector		AS-8534-000
Fusing		One/group, Type 3 AG, 6 A (normal blow)

B802–008 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config		
Parameter Name	Value	
r MAPPING	BIT (%M-0X)	·
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	8	
·OUTPUT TYPE	BINARY	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	8	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 8 bits output	Mapped as 8 bits output %M
	0x or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B803-008 115 Vac Input

16

At a Glance Purpose This chapter describes the functional and physical characteristics of theB803-008 115 Vac Input module. What's in this This chapter contains the following topics: Chapter? Topic Page B803-008 115 Vac Input, Overview 286 B803-008 115 Vac Input, Field Connections 287 B803-008 115 Vac Input, Specifications 288 B803-008 Parameter Configuration 289

B803-008 115 Vac Input, Overview

General
CharacteristicsThe B803–008 115 Vac Input Module senses and converts switched input signals
into logic voltage levels used by the PLC into 8 independent 115 Vac outputs. The
module allows for up to eight independently sensed inputs. These inputs can be
received from push buttons, limit and proximity switches, as well as other 115 Vac
sources.

Simplified Schematic

Following is a simplified schematic of the B803--008 115 Vac Input Module.

B803–008 115 Vac Input, Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Input Connections The following diagram shows terminal numbering and input connections for the B803–008 module.

B803–008 115 Vac Input, Specifications

Specification Table

The following table provides the specifications for the unit.

B803-008 Specifications			
Description		115 Vac Isolated Input	
Number of Points		8	
Operating Range Voltage		80—130 Vac/47—63 Hz	
Number of Groups		8	
Inputs/group		1	
Maximum Input Voltage	Continuous	130 Vac	
	Surge	220 Vac for 1 cycle	
ON Condition		80—130 Vac (source impedance < 1 k Ω	
	Threshold Voltage	60 15 V RMS	
OFF Condition	Maximum/Module	0—35 Vac (source impedance)=0 Ω 0—	
		130 Vac (source impedance ≥40 kΩ	
ON Current		7 mA (typical @ 115 Vac)	
Maximum Response Time	OFF→ON	6 ms (4 ms typical)	
	ON→OFF	18 ms (12 ms typical)	
Power Required	+5 V	27 mA	
	+4.3 V	1 mA	
	-5 V	2 mA	
Terminal Connector		AS-8534-000	

B803–008 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

8-IN		
Config		
Parameter Name	Value	
r MAPPING	BIT (%I-1X)	▼
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	8	
· INPUT TYPE	BINARY	▼
1 : 140 XBP . 3 : B803		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	8	1	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 8 bits input	Mapped as 8 bits input
	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3x	%IWx
Input Type	BIN/BCD	BIN/BCD

B804-116 115 Vac Output

This chapter contains the following topics:

17

At a Glance

This chapter describes the functional and physical characteristics of the B804–116 115 Vac Output Module.

What's in this Chapter?

Торіс	Page
B804–116 115 Vac Output, Overview	292
B804–116 115 Vac Output, Field Connections	293
B804–116 48 Vac Output, Specifications	294
B804–116 Parameter Configuration	295

B804–116 115 Vac Output, Overview

General
CharacteristicsThe B804–116 115 Vac Output Module converts logic signals used in the PLC into
16 independent 115 Vac outputs. Each output is capable of driving a relay, pilot
lamp, motor starter, solenoid, or any other load up to 2.0 A.
The B804–116 is capable of handling a total continuous current of 6 A/group of eight
points and 12 A/module. The module uses triac switches to control loads connected
to an external power source. These switches are designed to withstand the high
surge currents typical of industrial loads.

Simplified Following is a simplified schematic of the B804–116 115 Vac Output Module. Schematic

B804–116 115 Vac Output, Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Output Connections The following diagram shows terminal numbering and output connections for the the B804-116 module.

B804–116 48 Vac Output, Specifications

Specification Table

The following table provides the specifications for the unit.

B804-116 Specificati	ons		
Description		115 Vac Output	
Number of Points		16	
Operating Voltage		80—130 Vac continuous /47—63 Hz	
Number of Groups		2	
Outputs/group		8	
ON Current Maximum/point		2 A continuous	
	Surge Current	50 A 1 cycle	
	Maximum/group	6 A	
	Maximum/module	12.0 A	
	Minimum Load Current	25 mA (B804–116)	
	Minimum Load Current	50 mA (B804-016)	
Voltage Drop		1.5 V @ 2 A)	
Maximum OFF	Leakage Current	3 mA @ 115 Vac	
Maximum Response Time	OFF→ON	8.3 ms @ 60 Hz	
	ON→OFF	8.3 ms @ 60 Hz	
dv/dt		100 V/s	
Power Required	+5 V	76 mA	
	+4.3 V	480 mA	
	-5 V	0 mA	
Terminal Connector		AS-8534-000	
Fusing		Type 3AB, 8 A (normal blow)	

B804–116 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config	
Parameter Name	Value
r MAPPING	BIT (%M-0X)
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	16
·OUTPUT TYPE	BINARY

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	16	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 16 bits output	Mapped as 16 bits output
	1x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B804-148 48 Vac Output

18

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B804–14 48 Vac Output Module.			
What's in this	This chapter contains the following topics:			
Chapter?	Торіс	Page		
	B804-148 48 Vac Output, Overview	298		
	B804-148 48 Vac Output, Field Connections	299		
	B804-148 48 Vac Output, Specifications	300		
	B804–148 Parameter Configuration	301		

B804–148 48 Vac Output, Overview

General Characteristics The B804–148 48 Vac Output Module converts logic signals used within the PLC into 16 independent 48 Vac outputs. Each output is capable of driving a relay, pilot lamp, motor starter, solenoid, or any other load up to 2.0 A. The module has 16 outputs, divided into two groups of eight discrete points.

Simplified Schematic Following is a simplified schematic of the B804–148 48 Vac Output Module.

B804–148 48 Vac Output, Field Connections

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. Terminal The following diagram shows terminal numbering and output connections for the the Numbering and B804-148 module. Output Connections OUTPUT 1 OUTPUT 9 (11) (1)OUTPUT 2 2 (12) OUTPUT 10 3 OUTPUT 3 OUTPUT 11 (13) (4)(14) OUTPUT 4 OUTPUT 12 (5) (15) OUTPUT 5 OUTPUT 13 6 (6) OUTPUT 6 OUTPUT 14 OUTPUT 7 $\overline{7}$ (17) OUTPUT 15 OUTPUT 8 (8) **(**8) OUTPUT 16 ၜ (19) AC COMMON AC COMMON AC HOT -AC HOT -(10) 20) \sim GROUP B GROUP A

B804–148 48 Vac Output, Specifications

Specification Table

The following table provides the specifications for the unit.

6 1			
B804-148 Specificati	ions		
Description		48 Vac Output	
Number of Points		16	
Operating Voltage		40-56 Vac continuous /47-63 Hz	
Number of Groups		2	
Outputs/group		8	
ON Current Maximum/point		2 A continuous	
	Surge Current	50 A 1 cycle	
	Maximum/group	6 A	
	Maximum/module	12.0 A	
Voltage Drop		1.5 V @ 2 A)	
Leakage Current		3 mA	
Maximum OFF		3 mA	
Minimum Load Currer	nt	25 mA RMS	
Maximum Response OFF→ON Time		8.3 ms @ 60 Hz	
	ON→OFF	8.3 ms @ 60 Hz	
dv/dt	.1	100 V/s	
	Commutating	5 V/s	
Power Required	+5 V	76 mA	
	+4.3 V	480 mA	
	-5 V	0 mA	
Terminal Connector		AS-8534-000	
Fusing		One/group, 8 A replaceable	

B804–148 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

16-OUT	
Config	
Parameter Name	Value
r MAPPING	BIT (%M-0X)
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	16
·OUTPUT TYPE	BINARY
1 : 140 XBP 3 : B804	

Module Configuration

Parameter Name	Value	Value	Description
	(Default)	(Options Available)	
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	16	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 16 bits output 1x	Mapped as 16 bits output %Mx
	or Mapped as 1 register output 4x	or Mapped as 1 word output %MWx
Output Type	BIN/BCD	BIN/BCD

B805-016 115 Vac Input

19

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B805–016 115 Vac Input Module.		
What's in this	This chapter contains the following topics:		
Chapter?	Торіс	Page	
	B805–016 115 Vac Input, Overview	304	
	B805-016 115 Vac Input, Field Connections	305	
	B805–016 115 Vac Input, Specifications	306	
	B805–016 Parameter Configuration	307	

B805-016 115 Vac Input, Overview

GeneralThe B805–016 115 Vac Input Module senses and converts switched input signalsCharacteristicsinto logic voltage levels used by the PLC. The module allows for up to 16 inputs in
2 groups of 8. These inputs can be received from push buttons, limit and proximity
switches, as well as other 115 Vac sources.

Simplified Schematic Following is a simplified schematic of the B805-016 115 Vac Input Module.

B805–016 115 Vac Input, Field Connections

Overview

Input Connections User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

TerminalThe following diagram shows terminal numbering and input connections for the
B805–016 module.

B805–016 115 Vac Input, Specifications

Specification Table

The following table provides the specifications for the unit.

B805–016 Specification	S		
Description		115 Vac Input	
Number of Points		16	
Operating Voltage		80—130 Vac continuous /47—63 Hz	
Number of Groups		2	
Inputs/group		8	
Maximum Input Voltage	Continuous	130 Vac	
	Surge	220 Vac for 1 cycle	
ON Conditions		80—130 Vac (source impedance)<1 k Ω	
Threshold Voltage		60 15 V RMS	
OFF Condition		0—35 Vac (source impedance) = $1k\Omega$	
		0—130 Vac (source impedance)≥40 kΩ	
ON Current		6 mA (typical) @ 115 Vac	
OFF Current		1.8 mA (max) @ 35 Vac RMS leakage for input sensors	
		3.0 mA (typical) @ 60 Vac RMS	
Maximum Response Time	OFF→ON	6 ms (4 ms typical)	
	ON→OFF	18 ms (11 ms typical)	
Power Required	+5 V	40 mA	
	+4.3 V	1 mA	
	-5 V	14 mA	
Terminal Connector		AS-8534-000	

B805–016 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

16-IN		
Config		
Parameter Name	Value	
MAPPING	BIT (%I-1X)	•
ÎNPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	16	
· INPUT TYPE	BINARY	•
1 : 140 XBP 3 : B805		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 word input	Mapped as 1 word input
	3x	%IWx
Input Type	BIN/BCD	BIN/BCD

B806-032 115 Vac Output

20

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B806–032 115 Vac Output Module.			
What's in this	This chapter contains the following topics:	This chapter contains the following topics:		
Chapter?	Торіс	Page		
	B806-032 115 Vac Output, Overview	310		
	B806-032 115 Vac Output, Field Connections	312		
	B806-032 115 Vac Output, Fusing Guidelines	313		
	B806-032 115 Vac Output, Specifications	314		
	B806-032 Parameter Configuration	315		

B806-032 115 Vac Output, Overview

GeneralThe B806–032 115 Vac Output Module has 32 outputs. The outputs can serve 120CharacteristicsVac voltage relays, motor starters, solenoids, pilot lamps, valves, and other loads
rated up to 1.0 A. The outputs are divided into two groups of 16 discrete points.

Following is a simplified schematic of the B806–032 115 Vac Output Module.

B806–032 115 Vac Output, Field Connections

Overview

Terminal

Output

Numbering and

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B806–032 module.

B806-032 115 Vac Output, Fusing Guidelines

Fuse Ratings

For reasons of safety and equipment performance, Schneider Electric recommends external fusing on each individual output point according to the following rating:

Fuse Rating	Fuse Value	Example Type
Very Fast Acting	2 A	Littelfuse 3 AB

Note: A minimum voltage rating of 250 V is required for safe fuse operation. Voltage ratings can be found along with current ratings on the fuse end cap.

Note: Observe fusing guidelines

Failure either to fuse these output modules or to follow the recommended fuse ratings could cause unpredictable results in module performance.

B806–032 115 Vac Output, Specifications

Specification Table The following table provides the specifications for the unit.

B806–032 Specifications			
Number of Points		115 Vac Output	
		32 80—130 Vac continuous /47—63 Hz	
Outputs/group		16	
ON Current	Maximum/point	1 A continuous	
	Surge Current	15 A 1 cycle	
	Maximum/group	8 A	
	Maximum/module	16 A	
	Minimum Load Current	5 mA	
Voltage Drop		1.5 V RMS (maximum)	
Maximum OFF	Leakage Current	2 mA @ 115 Vac	
Maximum Response Time	OFF→ON	8.3 ms @ 60 Hz	
	ON→OFF	8.3 ms @ 60 Hz	
dv/dt	I	600 V/s	
	Commutating	5 V/s	
Power Required	+5 V	210 mA	
	+4.3 V	1 mA	
	-5 V	0 mA	
Terminal Connector		AS-8535-000	

Note: The B806–032 is powered by a standard 24 Vac field power supply.

B806–032 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

32-OUT		
Config		
Parameter Name	Value	
r MAPPING	BIT (%M-0X)	•
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	32	
·OUTPUT TYPE	BINARY	•
-		
1 : 140 XBP 3 : B806		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	32	2	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 32 bits output 1x	Mapped as 32 bits output %Mx
	or Mapped as 2 registers output 4x	or Mapped as 2 words output %MWx
Output Type	BIN/BCD	BIN/BCD

B806-124 24 Vac Output

21

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B806–124 24 Vac Output Module. This chapter contains the following topics:		
What's in this			
Chapter?	Торіс	Page	
	B806–124 24 Vac Output, Overview	318	
	B806-124 24 Vac Output, Field Connections	320	
	B806-124 24 Vac Output, Specifications	321	
	B806–124 Parameter Configuration	322	

B806–124 24 Vac Output, Overview

GeneralThe B806–124 Output Module has 32 outputs. The outputs can serve 24 VacCharacteristicsvoltage relays, motor starters, solenoids, pilot lamps, valves, and other loads rated
up to 1.0 A. The outputs are divided into two groups of 16 discrete points.

Following is a simplified schematic of the B806-124 24 Vac Output Module.

Simplified

319

B806–124 24 Vac Output, Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Output Connections The following diagram shows terminal numbering and output connections for the the B806–124 module.

B806–124 24 Vac Output, Specifications

able	B806–124 Specifications		
	Description	Description	
	Number of Points	Number of Points	
	Operating Voltage	Operating Voltage	
			42 Vac RMS max for 1 cycle
	Number of Groups		2
	Outputs/group		16
	ON Current	Maximum/point	1 A continuous
		Surge Current	15 A 1 cycle
		Maximum/group	8 A
		Maximum/module	16 A
		Minimum Load Current	5 mA
	Voltage Drop	Voltage Drop	
	Maximum OFF	Leakage Current	2 mA
	Maximum Response Time	OFF→ON	8.3 ms @ 60 Hz
		ON→OFF	8.3 ms @ 60 Hz
	dv/dt		600 V/s
		Commutating	5 V/s
	Power Required	+5 V	210 mA
		+4.3 V	1 mA
		-5 V	0 mA
	Terminal Connector		AS-8535-000

Note: The B806–124 is powered by a standard 24 Vac field power supply.

B806–124 Parameter Configuration

Parameter and **Default Values**

. Para

ameter	Configuration	Window	

32-OUT		
Config		
Parameter Name	Value	
· - · MAPPING	BIT (%M-0X)	•
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	32	
• - • OUTPUT TYPE	BINARY	•
1 : 140 XBP . 3 : B806		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	32	2	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 32 bits output	Mapped as 32 bits output
Туре	1x	%Mx
	or	or
	Mapped as 2 registers output	Mapped as 2 words output
	4x	% MWx
Output Type	BIN/BCD	BIN/BCD

B807-132 115 Vac Input

22

At a Glance Purpose This chapter describes the functional and physical characteristics of the B807-132 115 Vac Input Module. What's in this This chapter contains the following topics: Chapter? Topic Page B807-132 115 Vac Input, Overview 324 B807-132 115 Vac Input, Field Connections 326 B807-132 115 Vac Input, Specifications 329 B807-132 Parameter Configuration 330

B807–132 115 Vac Input, Overview

GeneralThe B807–132 115 Vac Input Module senses and converts switched input signalsCharacteristicsinto logic voltage levels used by the PLC. These inputs can be received from push
buttons, limit and proximity switches, as well as other 115 Vac sources.

Following is a simplified schematic of the B807–132 115 Vac Input Module.

Simplified Schematic

Note: When using Binary and BCD inputs remember that input 1 is the MSB and input 32 is the LSB.

B807–132 115 Vac Input, Field Connections

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B807–132 module.

Note: Pins 1, 20, 21, and 40 have no internal connections.

Note: The module can operate from 47—63 Hz. However, its use with proximity switches is recommended only at 60 Hz nominal line frequency. Leakage current through switching devices connected to the module may cause a false ON condition.

Input Current– to–Frequency Relationship

The following illustration is a plot of the input current versus frequency.

 A. MAXIMUM ALLOWABLE SINEWAVE LEAKAGE CURRENT (FROM EXTERNAL DEVICE) TO GUARANTEE AN OFF CONDITION (CALCULATED AT 35 Vac) AT B807 TERMINALS
 B. MINIM REQUED INFO CURRENT TO GUARANTEE ANON CONDITION INTE-THE MODULES INTERCED TO EUSED WITH VOLTAGE INPUTS; VOLTAGE
 B. MINIM REQUED NOT CURRENT TO GUARANTEE ANON CONDITION INTE-THE MODULES INTERCED TO EUSED WITH VOLTAGE INPUTS; VOLTAGE
 B. MINIM REQUED NOT CURRENT TO GUARANTEE ANON CONDITION INTE-THE MODULES INTERCED TO EUSED WITH VOLTAGE INPUTS; VOLTAGE
 B. MINIM REQUERED NOT CURRENT TO GUARANTEE ANON CONDITION INTE-THE MODULES INTO CONDITION
 C. MAXIMUM MODULE INPUT CURRENT AT 130 Vac

B807-132 115 Vac Input, Specifications

Specification . Table

B807–132 Specifications			
Description		115 Vac Input	
Number of Points		32	
Operating Voltage		80—130 Vac continuous /47—63 Hz	
Number of Groups		4	
Inputs/group		8	
Maximum Input Voltage		150 Vac for 10 s	
		200 Vac for 1 cycle	
ON Condition		80—130 Vac (source impedance)<1 k Ω	
OFF Condition		0—35 Vac (source impedance) = 0Ω	
		0—130 Vac (source impedance) ≥90 kΩ	
ON Current		3.7 mA minimum @ 80 Vac, 50 Hz input*	
		6.4 mA minimum @ 115 Vac, 60 Hz input*	
Maximum External to Module Leakage Current		1.8 mA to guarantee an OFF condition @ 60 Hz	
Maximum Response Time OFF→ON ON→OFF		6 ms	
		35 ms	
Power Required	+5 V	80 mA	
+4.3 V		2 mA	
	-5 V	0 mA	
Terminal Connector		AS-8535-000	

*Minimum input on current at stated voltage and frequency with less than 10 Ω source impedance.

Note: All voltage and current specifications assume a sine waveform and are specified as RMS voltage and current.

Note: Input LED brightness is a function of line voltage applied.

B807–132 Parameter Configuration

Parameter and **Default Values**

Parameter Configuration Window

32-IN		
Config		
Parameter Name	Value	
r - · MAPPING	BIT (%I-1X)	•
L INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	32	
· INPUT TYPE	BINARY	•
1 : 140 XBP 3 : B807		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	32	2	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 32 bits input	Mapped as 32 bits input
Туре	1x	%lx
	or	or
	Mapped as 2 registers input	Mapped as 2 words input
	3x	%IWx
Input Type	BIN/BCD	BIN/BCD

B808-016 230 Vac Output

23

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B808–0 230 Vac Output Module.	
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B808–016 230 Vac Output, Overview	332
	B808-016 230 Vac Output, Field Connections	333
	B808-016 230 Vac Output, Specifications	334
	B808–016 Parameter Configuration	335

B808-016 230 Vac Output, Overview

General The B808-016 230 Vac Output Module converts logic signals used within the PLC Characteristics into 16 independent 230 Vac outputs. Each output is capable of driving a relay, pilot lamp, motor starter, solenoid, or any other load up to 2.0 A. The B808 is capable of 6 A per group of eight and handling 12 A per module. The module uses triac switches to control loads connected to an external power source. These switches are designed to withstand the high surge currents typical of industrial loads

Simplified Schematic

Following is a simplified schematic of the B808–016 230 Vac Output Module.

B808–016 230 Vac Output, Field Connections

Overview

Terminal

Output Connections

Numbering and

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the B808–016 module.

B808–016 230 Vac Output, Specifications

Specification Table

The following table provides the specifications for the unit.

B808–016 Specifications		
Description		230 Vac Output
Number of Points		16
Operating Voltage		180—260 Vac/47—63 Hz
Number of Groups		2
Outputs/group		8
ON Current	Maximum/point	2 A continuous
	Surge Current	50 A (max) 1 cycle
Maximum/group		6 A
	Maximum/module	12 A
ON Voltage Drop		1.3 V @ 2.0 A
Maximum OFF	Leakage Current	8 mA @ 230 Vac
Maximum Response Time	OFF→ON	8.3 mA @ 60 Hz
	ON→OFF	8.3 ms @ 60 Hz
Applied dv/dt		100 V/s
Power Required	+5 V	76 mA
	+4.3 V	480 mA
	-5 V	0 mA
Terminal Connector	·	AS-8534-000
Fusing		1/group, Type 3 AB, 8 A (normal blow)

B808–016 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

16-OUT		
Config		
Parameter Name	Value	
r MAPPING	BIT (%M-0X)	
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	16	
·OUTPUT TYPE	BINARY	
L		
1 : 140 XBP 3 : B808		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	16	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits output	Mapped as 16 bits output
Туре	1x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B809-016 230 Vac Input

24

At a Glance

Purpose	This chapter describes the functional and physical character 230 Vac Input Module.	eristics of the B809–016
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B809–016 230 Vac Input, Overview	338
	B809-016 230 Vac Input, Field Connections	339
	B809–016 230 Vac Input, Specifications	340
	B809–016 Parameter Configuration	341

B809-016 230 Vac Input, Overview

General The B809–016 230 Vac Input Module senses and converts switched input signals Characteristics into logic voltage levels used by the PLC. The module allows for up to 16 inputs in two groups of eight. These inputs can be received from push buttons, limit and proximity switches, as well as other 230 Vac sources. Simplified Following is a simplified schematic of the B809–016 230 Vac Input Module. Schematic THRESHOLD SWITCH ∇ OPTICAL **INPUT 1** т COUPLER TO PC COMMON (RETURN) GRP 1 -V

B809–016 230 Vac Input, Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

TerminalThe following diagram shows terminal numbering and input connections for the
B809–016 module.InputB809–016 module.ConnectionsInput

B809-016 230 Vac Input, Specifications

Specification Table

The following table provides the specifications for the unit.

5 1	1	
B809–016 Specifications		
Description		230 Vac Input
Number of Points		16
Operating Voltage		160—260 Vac/47—63 Hz
Number of Groups		2
Outputs/group		8
Maximum Input Voltage	Continuous	260 Vac
		300 Vac for 10 s
	Surge	400 Vac for 1 cycle
ON Conditions		160—260 Vac (source impedance)= 1 k Ω
ON Current		8.5 mA (typical) @ 230 Vac
OFF Conditions		0—90 Vac (source impedance)=0 Ω
Peak inrush for 260 VRMS (Rs=0) applied @ peak		1.7 A max
Maximum Response Time	OFF→ON	5 ms (3 ms typical)
	ON→OFF	18 ms (12 ms typical
Power Required	+5 V	42 mA
	+4.3 V	1 mA
	-5 V	15 mA
Dimensions	Space Required	1 slot
	Weight	2.38 lbs (1.08 kg)
Terminal Connector		AS-8534-000

Note: The B809–016 input module is electrically compatible with the B808-016 output module.

B809–016 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

16-IN	
Config	
Parameter Name	Value
r MAPPING	BIT (%I-1X)
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	16
· INPUT TYPE	BINARY
1 : 140 XBP 3 : B809	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3x	%IWx
Input Type	BIN/BCD	BIN/BCD

B810-008 115 Vac Isolated Output

25

At a Glance

Purpose	This chapter describes the functional and physical characteris 115 Vac Output Module.	tics of the B810–008
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B810–008 115 Vac Output, Overview	344
	B810–008 115 Vac Output, Field Connections	345
	B810–008 115 Vac Isolated Output, Specifications	346
	B810-008 Parameter Configuration	347

B810-008 115 Vac Output, Overview

GeneralThe B810–008 115 Vac Output Module converts logic signals used within the PLCCharacteristicsinto eight independent 115 Vac outputs. Each output is capable of driving a relay,
pilot lamp, motor starter, solenoid, or any other load up to 2.0 A. The B810–008 is
capable of 6 A/group of eight and handling 12 A/module. The module uses eight triac
switches to control loads connected to an external power source. These switches
are designed to withstand the high surge currents typical of industrial loads.

Simplified Schematic

Following is a simplified schematic of the B810–008 115 Vac Output Module.

Zero-cross threshold switching is incorporated into each output circuit. Upon controller command, outputs switch ON at the first line voltage zero-crossing, and switch OFF at the first load current zero-crossing.

Output status indicators are provided for each output circuit. These neon indicators will be ON when a load is connected and the output is ON, *or when there is no connected load.* These indicators are isolated from the triac output and require a separate lamp supply which is fused at 1/4 A. Blown fuse indicators are also provided for each output circuit. These indicators light (ON) when the corresponding fuse has blown.

B810-008 115 Vac Output, Field Connections

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the B810–008 module.

B810–008 115 Vac Isolated Output, Specifications

Specification Table

The following table provides the specifications for the unit.

B810–008 Specifications				
Description		115 Vac isolated output		
Number of Points		8		
Operating Voltage		80—130 Vac continuous/47—63 Hz		
Number of Groups		8		
Outputs/group		1		
On Current	Maximum/point	2 A continuous		
	Maximum/module	12 A		
	Maximum/group	2 A		
	Surge Current	50 A (max) 1 cycle		
	Minimum Load Current	50 mA		
Maximum OFF	Leakage Current	3 mA @ 115 Vac		
ON Voltage Drop	1	1.3 V @ 2.0A max		
Surge Voltage		150 Vac for 10 s		
		200 Vac for 1 cycle		
Maximum Response Time	OFF→ON	8.3 ms @ 60 Hz		
	ON→OFF	8.3 ms @ 60 Hz)		
dv/dt	•	100 V/s		
	Commutating	5 V/s		
Power Required	+5 V	50 mA		
	+4.3 V	240 mA		
	-5 V	0 mA		
Terminal Connector		AS-8534-000		
Fusing		One/group, Type 3 AG, 3 A (normal blow)		

B810–008 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config		
Parameter Name	Value	
MAPPING	BIT (%M-0X)	•
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	8	
·OUTPUT TYPE	BINARY	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	8	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 8 bits output	Mapped as 8 bits output
Туре	0x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B814–108 Relay Output

26

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B814–108 Relay Output Module.	
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B814–108 Relay Output, Overview	350
	B814–108 Relay Output, Configuration	351
	B814–108 Relay Output, Field Connections	352
	814–108 Relay Output, Specifications	353
	B814-108 Parameter Configuration	354

B814–108 Relay Output, Overview

 General
 The B814–108 Relay Output Module converts signals from the PLC to eight independent relay outputs. Each output is capable of driving a relay, pilot lamp, motor starter, solenoid, or any other load up to 5.0 A. Each of the eight outputs is electrically isolated from the I/O bus and from the other seven outputs by the relay coil. The module is designed to withstand the high surge currents typical of industrial loads.

 The module is upper configurable on to output and form the other seven outputs by the relay coil.
 The module is designed to withstand the high surge currents typical of industrial loads.

The module is user-configurable as to setting for normally-open or normally-closed operation of the relays as described below, and is compatible with other Modicon input modules. Assuming a normally-open configuration, when the relay coil is energized, the relay contacts will conduct current from output A terminal to output B terminal (see the following figure).

SimplifiedFollowing is a simplified schematic of the B814–108 Relay Output Module.Schematic

B814–108 Relay Output, Configuration

Configuration Overview The B814 is initially shipped with all eight channels jumpered for the normally-open configuration. You may optionally wire any of the channels for normally-closed operation if desired. This is done by transferring a wire jumper from one tab to another on the printed circuit board. Refer to the label on the side of the module. The following table shows the user configuration wire/tab designations for the unit.

Channel	N.O.	N.C.	Channel	N.O.	N.C.
1	W1-E2	W1-E1	5	W5-E10	W5-E9
2	W2-E4	W2-E3	6	W6-E12	W6-E11
3	W3-E6	W3-E5	7	W7-E14	W7-E13
4	W4-E8	W4-E7	8	W8-E16	W8-E15

B814–108 Relay Output, Field Connections

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Output Connections The following diagram shows typical circuit connections for power applications of the B814–108 module.

Note: Since each output is isolated from the remaining outputs, separate power sources can be used for each load. Each output can be wired for current source or current sink operations.

Note: It is possible to have the ACTIVE indicator lit with one or more output channels working improperly.

814–108 Relay Output, Specifications

Specification Table

The following table provides the specifications for the unit.

814–108 Specifications				
Description		Relay (NO/NC) output,		
Number of Points		8		
Operating Voltage		0—30 Vdc 0—240 Vac/47—63 Hz		
Number of Groups		8		
Outputs/group		1		
ON Current	Maximum/point	5 A @ 30 Vdc/120 Vac		
		4 A @ 240 Vac		
	Maximum/module	40 A @ 30 Vdc/120 Vac		
Maximum Load Current	Carrying (unswitched)	3 A max)		
	Switching	2.0 max (0.3 A @ 300 Vdc		
Switching Capability		960 VA maximum, or 150 W dc maximum		
Contact Resistance		< 300 m Ω (including fuse, wire, connectors, and contacts)		
OFF State	Leakage Current	.5 mA (typical) @ 240 Vac/60 Hz		
Maximum Response Time	OFF→ON	15 ms (6 ms typical)		
	ON→OFF	15 ms (6 ms typical)		
Power Required	+5 V	107 mA		
	+4.3 V	800 mA		
	-5 V	0 mA		
Relay Life Rating		100,000 operations, and 50,000 operations with inductive loads @ 25°C		
Terminal Connector		AS-8534-000		
Fusing		1 / output, 7 A		

Note: For 48 Vdc operation, the maximum load is 1A.

B814–108 Parameter Configuration

Parameter and **Default Values**

Para

amete	r Con	figura	tion	Window	
-------	-------	--------	------	--------	--

RELAY 8-OUT	
Config	
Parameter Name	Value
MAPPING	BIT (%M-0X)
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	8
OUTPUT TYPE	BINARY 🔻
1 : 140 XBP . 3 : B814	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	8	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 8 bits output 0x	Mapped as 8 bits output %Mx
туре	or	or
	Mapped as 1 register output 4x	Mapped as 1 word output %MWx
Output Type	BIN/BCD	BIN/BCD

B816 Isolated Output

27

B816 Parameter Configuration

Parameter and Default Values Parameter Configuration Window

16-OUT

16-001		
Config		
Parameter Name	Value	
r MAPPING	BIT (%M-0X)	•
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	16	
►OUTPUT TYPE	BINARY	•
1 : 140 XBP 3 : B816		

Name	Default Value	Options	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	-	
Outputs Ending Address	16	-	
Output Type	BINARY	BCD	

B817–116 and B817–216 115/230 Vac Isolated Input

At a Glance				
Purpose	This chapter describes the functional and physical characteristics of the B8 and B817–216 115/230 Vac Isolated Input Modules.	817–116		
What's in this	This chapter contains the following topics:			
Chapter?	Торіс	Page		
	B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Overview			
		358		
	B817–116 (115 Vac) and B817–216 (230 Vac) Isolated Input, Field Connections	358 359		
	B817–116 (115 Vac) and B817–216 (230 Vac) Isolated Input, Field Connections B817–116 (115 Vac) and B817–216 (230 Vac) Isolated Input, Specifications			

B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Overview

 General
 The B817–116 (115 Vac) and B817–216 (230 Vac) Isolated Input Modules sense

 Characteristics
 OFF and ON input voltages from its field circuitry, converting them to dc logic levels used in the logic program by a Modicon PLC.

 The module's 16 input circuits are individually isolated from one another. As each input circuit uses a neutral return wire, none has a definite relationship to system ground unless established in the user's field circuitry. The module's logic circuitry is shielded from radiated signals or interference originating in the field, and its field inputs are optically isolated from the system logic.

SimplifiedFollowing is a simplified schematic of the B817–116 (115 Vac) and B817–216 (230SchematicVac) Isolated Input Modules.

When the voltage exceeds the threshold circuits voltage requirement, current will flow through the threshold switch and opto-isolator via the precision attenuator and the bridge rectifier. The output pulses coupled through the isolator are averaged so that a steady state dc voltage representation of the inner circuit's ON-state condition is sensed by the Ourbus chip (OBS) on the logic side of the module. The Ourbus output register is set to represent the field ON state. As long as the field input status remains true, the module will communicate this status each time it is polled by the PLC.

B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Field Connections

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Input Connections

The following diagram shows terminal numbering and input connections for the B817–116 (115 Vac) and B817–216 (230 Vac) Isolated Input Modules.

The following figure shows typical circuitry connected to the user side of the B817–116 field connector.

The following figure shows typical circuitry connected to the user side of the B817–216 field connector.

B817-116 (115 Vac) and B817-216 (230 Vac) Isolated Input, Specifications

Specification Table

The following table provides the specifications for the unit.

B817-x16 Specifications				
Description		115 Vac isolated input (B817–116)		
		230 Vac isolated input (B817–216)		
Number of Points		16		
Number of Groups		16		
Inputs/group		1		
Maximum Input Voltage	Continuous	130 Vac/47—63 Hz (B817–116)		
		260 Vac/47-63 Hz (B817-216)		
	Surge	200 Vac for 1 cycle (B817–116)		
		400 Vac for 1 cycle (B817–216)		
ON Conditions	B817–116	>80 Vac (source impedance,<1 k Ω		
B817–216		>160 Vac (source impedance, <1 k Ω		
OFF Conditions B817–116		0—35 Vac (source impedance)=0 Ω		
		0—130 Vac (source impedance)>40k Ω		
		0—90 Vac (source impedance)=0 Ω		
	B817–216	0—260 Vac (source impedance)>80 k Ω		
Wetting Current	B817–116	0 4 mA (typical) @ 115 Vac		
	B817–216	8.2 3 mA (typical) @ 230 Vac		
Maximum Response Time	OFF→ON	6 ms		
	ON→OFF	18 ms		
Power Required	+5 V	25 mA		
+4.3 V		2 mA		
	-5 V	8 mA		
Terminal Connector		AS-8535-000		

B817–116 and B817–216 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

16_IN ISO		
Config		
Parameter Name	Value	
r MAPPING	BIT (%I-1X)	•
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	16	
· INPUT TYPE	BINARY	•
1 : 140 XBP 3 : B817		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3х	%IWx
Input Type	BIN/BCD	BIN/BCD

B818 24 Vac Output

29

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B818 24 Vac Output Module.	
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B818—Setting Module DIP Switch	366
	B818 24Vdc Output, Field Connections	367
	B818 24 Vdc (True High) Output, Specifications	368
	B818 Parameter Configuration	369

B818—Setting Module DIP Switch

Switch location and position	The four position DIP-switch is located on the rear of the module. This switch controls the mode of the module as Bi-directional or Uni-directional.
Switch Settings	The following figure presents DIP switch settings for the B872-100 module. Also, refer to the label located on the left side of the module itself.

4- POSITION DIP- SWITCHES

TOP OF MODULE Not used keep left Not used keep left N left = Uni-Directional / right = Bi-Directional ധ 4 Not used keep left 0 1 ON OFF DOWN UP LEFT RIGHT

Note: Two types of switches may be in use. Toggle up/down or throw left/right

B818 24Vdc Output, Field Connections

Terminal Numbering and Output Functions User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows how to field connect the unit.

Group 1	Output 1		(21)	Output 17	Group 3
	Output 2	2	(22)	Output 18	
	Output 3	3	23	Output 19	
	Output 4	4	(24)	Output 20	
	+ 24VDC	5	25	+ 24VDC	
	GND	6	26)	GND	
	Output 5	7	(27)	Output 21	
	Output 6	8	(28)	Output 22	
	Output 7	9	(29)	Output 23	
	Output 8	(10)	30	Output 24	Group 4
Group 2	Output 9	(11)	(31)	Output 25	
	Output 10	(12)	32	Output 26	
	Output 11	(13)	33	Output 27	
	Output 12	14	34)	Output 28	
	+ 24VDC	(15)	35)	+ 24VDC	
	GND	(16)	36)	GND	
	Output 13	(17)	37)	Output 29	
	Output 14	18	38)	Output 30	
	Output 15	(19)	(39)	Output 31	
	Output 16	20	(40)	Output 32	
		L			

B818 24 Vdc (True High) Output, Specifications

Table	B818 Specification	B818 Specifications					
	Description		24 Vdc output				
	Type of Operation		True high				
	Number of Points		32				
	Operating Voltage		20—28 Vdc				
	Number of Groups		4				
	Outputs/group		8				
	On Current	Maximum/point	1 A continuous				
		Maximum/module	24 A				
		Maximum/group	6 A				
		ON→OFF	1 ms)				
	Power Required	+5 V	300 mA				
		+4.3 V	10 mA				
		-5 V	0 mA				

B818 Parameter Configuration

Parameter and Default Values Parameter Configuration Window

32-OUT	
Config	
Parameter Name	Value
r MAPPING	BIT (%M-0X)
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	32
OUTPUT TYPE	BINARY 🔻
1 : 140 XBP . 3 : B818	

Name	Default Value	Options	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	-	
Outputs Ending Address	32	-	
Output Type	BINARY	BCD	

B819-232 230 Vac Input

30

At a Glance Purpose This chapter describes the functional and physical characteristics of the B819-232 230 Vac Input Module. What's in this Chapter contains the following topics: This chapter contains the following topics: Topic Page B819-232, 230 Vac Input, Keying and Wiring 372 B819-232, 32 Point Input, Specifications 374 B819-232 Parameter Configuration 375

B819-232, 230 Vac Input, Keying and Wiring

B819-232 module.

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the the

Terminal Numbering and Output Connections

Not Used —	1	2	— I/P 1
I/P 2	3	4	— I/P 3
I/P 4	5	6	— I/P 5
I/P 6 —	7	8	— I/P 7
I/P 8 ——	9	10	— Group A Neutral
Not Used —	11	12	— I/P 9
I/P 10	13	14	— I/P 11
I/P 12	15	16	— I/P 13
I/P 14	17	18	— I/P 15
I/P 16 —	19	20	— Group B Neutral
Not Used —	21	22	— I/P 17
I/P 18 —	23	24	— I/P 19
I/P 20	25	26	— I/P 21
I/P 22	27	28	— I/P 23
I/P 24	29	30	— Group C Neutral
Not Used —	31	32	— I/P 25
I/P 26 —	33	34	— I/P 27
I/P 28	35	36	— I/P 29
I/P 30 —	37	38	— I/P 31
I/P 32 —	39	40	— Group D Neutral
		L	l

MechanicalThe following figure shows the keying for the the B819-232 module.Keying

B819-232, 32 Point Input, Specifications

Specification Table

The following table provides the specifications for the unit.

B819-232 Specification	s		
Description		230 Vac 32 point input module	
Number of Points		32	
Operating Voltage		170-250 Vac	
Number of Groups		4	
Inputs per group		8	
Power Required	+5 V	25 mA	
	+4.3 V	1 mA	
	-5 V	0 mA	
Visual indicator	1 neon light per input	"on" when input is on	
	1 "active" indicator	"on" when good communication with PC	
Maximum input voltage	Continous	250 Vac	
Surge		400 Vac (1cycle), 300 Vac (10 sec. max.)	
Transient		5/50 ns 1kV peak	
On Level		≥ 170 Vac cont.	
Off Level		< 90 Vac with 0 Ω < 250 Vac with 70 k Ω	

B819-232 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

32-IN230 VAC		
Config		
Parameter Name	Value	
· MAPPING	BIT (%I-1X)	•
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	32	
► INPUT TYPE	BINARY	•
	-	
···· ·· ···		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Outputs Starting Address	1	1	
Outputs Ending Address	32	2	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 32 bits input	Mapped as 32 bits input
Туре	1x	%lx
	or	or
	Mapped as 2 registers input	Mapped as 2 words input
	Зх	%IW
Input Type	BIN/BCD	BIN/BCD

B820-008 10-60 Vdc Output

31

At a Glance

This chapter describes the functional and physical characteristics of the B820 10—60 Vdc Output Module.		
This chapter contains the following topics:		
Торіс	Page	
B820-008 10-60 Vdc Output, Overview	378	
B820-008 10-60 Vdc Output, Field Connections	379	
B820-008 10-60 Vdc Output, Specifications	380	
B820–008 Parameter Configuration	381	
	10—60 Vdc Output Module. This chapter contains the following topics: Topic B820–008 10—60 Vdc Output, Overview B820–008 10—60 Vdc Output, Field Connections B820–008 10—60 Vdc Output, Specifications	

B820-008 10-60 Vdc Output, Overview

GeneralThe B820–008 10—60 Output Module converts logic signals used within the PLCCharacteristicsinto eight independent 10—60 Vdc outputs. Each output is capable of driving a relay,
pilot lamp, motor starter, solenoid, or any other load up to 2.0 A.
The B820–008 is capable of handling a total continuous current of 12 A. The module
uses transistor switches to control loads connected to an external power source.
These switches are designed to withstand the high surge currents typical of
industrial loads.

Simplified Following is a simplified schematic of the B820–008 10—60 Vdc Output Module. Schematic

The module's eight outputs are separated into four groups of two outputs each.

B820-008 10-60 Vdc Output, Field Connections

Overview

Terminal

Output Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and output connections for the Numbering and B820-008 module.

B820-008 10-60 Vdc Output, Specifications

Specification Table

The following table provides the specifications for the unit.

B820–008 Specifications			
Description		10—60 Vdc output	
Type of Operation		True high	
Number of Points		8	
Operating Voltage		10—60 Vdc	
Number of Groups		4	
Outputs/group		2	
On Current	Maximum/point	2 A	
	Maximum/ module	12 A	
	Maximum/group	6 A	
	Surge Current	10 A/channel max for 10 ms at a repetition rate of 0.05%	
ON State	Voltage Drop	1.5 Vdc max @ 2 A	
OFF State Leakage Current		5 mA (max) @ 60 Vdc	
Peak Voltage		80 Vdc max for 10 ms at a repetition rate of 0.05%	
Maximum Response Time	OFF→ON	1 ms (.1 ms typical)	
	ON→OFF	1 ms (.1 ms typical))	
dv/dt	1	200 V/s	
Power Required	+5 V	90 mA	
	+4.3 V	80 mA	
	-5 V	0 mA	
External Power Supply	L	10—60 Vdc, 500 mA max./group (excluding field load current))	
Terminal Connector		AS-8534-000	
Fusing		One/group, 3 AG, 6 A (normal blow)	

B820–008 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config		
Parameter Name	Value	
r MAPPING	BIT (%M-0X)	
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	8	
·OUTPUT TYPE	BINARY	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	8	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 8 bits output	Mapped as 8 bits output
Туре	0x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B821–108 10—60 Vdc Input (True High)

32

At a Glance Purpose This chapter describes the functional and physical characteristics of the B821-108 10—60 Vdc Input Module (True High). What's in this This chapter contains the following topics: Chapter? Topic Page B821-108 10-60 Vdc Input (True High), Overview 384 B821-108 10-60 Vdc Input (True High), Field Connections 385 B821-108 10-60 Vdc Input (True High), Specifications 386 B821-108 Parameter Configuration 388

B821–108 10—60 Vdc Input (True High), Overview

GeneralThe B821–108 10—60 Vdc Input Module (True High) senses and converts switched
input signals into logic voltage levels used by the PLC. The module allows for up to
eight inputs in four groups of two. Each group shares a common reference voltage
supply input. These inputs can be received from push buttons, limit and proximity
switches, as well as other 10—60 Vdc sources.

SimplifiedFollowing is a simplified schematic of the B821–108 10—60 Vdc Input ModuleSchematic(True High).

B821–108 10—60 Vdc Input (True High), Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Input Connections The following diagram shows terminal numbering and input connections for the B821–108 module.

B821–108 10–60 Vdc Input (True High), Specifications

Specification Table The following table provides the specifications for the unit.

B821–108 Specifications			
Description		10—60 Vdc input module	
Type of Operation		True high	
Number of Points		8	
Operating Voltage		10—60 Vdc	
Number of Groups		4	
Inputs/group		2	
On Level	Input Voltage	If the applied input voltage is ≥70% of the external power supply, the input to the controller is guaranteed to be in an ON logic state. However, to achieve satisfactory margin, the input voltage should be 75% of the supply voltage. Once the input to the controller is in the ON state, it remains ON as long as the input voltage is ≥60% of the power voltage.	

Note: When designing or selecting a drive circuit for the B821–108 module, take into consideration the values listed for input currents that follow.

The specification table for the unit is continued below.

Input Current	Supply Volt (Vdc)	Input Volt (Vdc)	Max Input Current (mA)
	10	10	10
	24	24	15
	48	48	25
	60	60	32
OFF Level	Input Voltage	If the applied input voltage is ≤40% of the supply voltage, the input to the controller is guaranteed to be in an OFF logic state. However, to achieve satisfactory margin, the input voltage should be ≤25% of the supply voltage.	

Note: When designing or selecting a drive circuit for the B821, take into consideration the values listed for source resistances that follow.

Specification

Table, Continued

Specification Table, Continued

The specification table for the unit is continued below.

r				
Source Resistance	Supply Volt (Vdc)	Input Volt (Vdc)	Max Source Resistance W)	
	10	10	200	
	60	60	500	
Maximum Input Voltage	Continuous	10—60 Vdc		
Maximum Response Time	OFF→ON	2.5 ms min, 11 ms max		
	ON→OFF	2.5 ms min, 11 ms max		
Power Required	+5 V	27 mA		
	+4.3 V	1 mA		
	-5 V	10 mA		
External Supply		10—60 Vdc (excluding input current)		
External Supply Cur	rent/Group	2 mA (max) @ 10 Vdc		
		5 mA (max) @ 24 V	dc	
		10 mA (max) @ 48 Vdc		
		12 mA (max) @ 60 Vdc		
Terminal Connector		AS-8534-000		

B821–108 Parameter Configuration

Parameter and Default Values Parameter Configuration Window

8-IN		
Config		
Parameter Name	Value	
r - · MAPPING	BIT (%I-1X)	▼
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	8	
INPUT TYPE	BINARY	•
1 : 140 XBP . 3 : B821		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	8	1	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 8 bits input	Mapped as 8 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3x	%IWx
Input Type	BIN/BCD	BCD/BIN

B824–016 24 Vdc Output (True High)

33

At a Glance				
Purpose	This chapter describes the functional and physical characteristics 24 Vdc (True High) Output Module.	s of the B824–016		
What's in this	This chapter contains the following topics:			
Chapter?	Торіс	Page		
		•		
	B824–016 24 Vdc Output (True High), Overview	390		
	B824–016 24 Vdc Output (True High), Overview B824–016 24 Vdc Output (True High), Field Connections	•		
		390		

B824-016 24 Vdc Output (True High), Overview

 General
 The B824–016 24 Vdc (True High) Output Module consists of sixteen independent outputs divided into two groups of eight. The B824–016 converts signals used within the PLC into 16 independent outputs. Outputs are capable of driving motor starters, relays, and a variety of other loads.

 There are 16 transistor switches which are used to control loads connected to external power source. The module's 16 outputs are in two groups, eight outputs per group. Each group is fused to protect the outputs from overload currents and polarity reversal.

Simplified Schematic Following is a simplified schematic of the B824–016 24 Vdc (True High) Output Module.

B824–016 24 Vdc Output (True High), Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

TerminalThe following diagram shows terminal numbering and output connections for the
B824–016 module.OutputB824–016 module.ConnectionsB824–016 module.

B824–016 24 Vdc Output (True High), Specifications

Specification Table

The following table provides the specifications for the unit.

B824–016 Specifications			
Description		24 Vdc output	
Type of Operation		True high	
Number of Points		16	
Operating Voltage		20—28 Vdc	
Number of Groups		2	
Outputs/group		8	
On Current	Maximum/point	2 A continuous	
	Maximum/module	12 A	
	Maximum/group	6 A	
	Maximum Surge	5 A for 10 ms	
ON State	Voltage Drop	1.8 Vdc @ 2 A	
OFF State	Leakage Current	1 mA (max) @ 24 Vdc	
Maximum Response Time	OFF→ON	1 ms	
	ON→OFF	1 ms)	
Power Required	+5 V	32 mA	
	+4.3 V	260 mA	
	-5 V	0 mA	
External Power Supply		24 Vdc 4 V, 175 mA -polarity protected (excluding field load current)	
Terminal Connector		AS-8534-000	
Fuse		One/group, 8 A	

B824–016 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config	
Parameter Name	Value
r MAPPING	BIT (%M-0X)
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	16
OUTPUT TYPE	BINARY

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	16	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits output	Mapped as 16 bits output
Туре	0x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B825–016 24 Vdc Input (True High)

34

At a Glance Purpose This chapter describes the functional and physical characteristics of the B825-016 24 Vdc (True High) Input Module. What's in this This chapter contains the following topics: Chapter? Topic Page B825-016 24 Vdc Input (True High), Overview 396 B825-016 24 Vdc Input (True High), Field Connections 397 B825-016 24 Vdc Input (True High), Specifications 398 B825-016 Parameter Configuration 399

B825–016 24 Vdc Input (True High), Overview

B825–016 24 Vdc Input (True High), Field Connections

Overview

Terminal

Numbering

and Input

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B825–016 module.

B825–016 24 Vdc Input (True High), Specifications

Specification Table

The following table provides the specifications for the unit.

B825-016 Specification	s		
Description		24 Vdc input	
Type of Operation		True high	
Number of Points		16	
Operating Voltage		20—28 Vdc	
Number of Groups		1	
Inputs/group		16	
Maximum Input Voltage Continuous		30 Vdc	
	Surge	500 Vdc for 3 ms	
ON Conditions		≥ 21 Vdc or.75 of Vs, whichever is less. 1000Ω max resistance to common. Input indicator ON.	
OFF Conditions		≤ 5 Vdc or.25 of Vs, whichever is greater. 25,000Ω resistance to common. Input indicator OFF.	
ON Current		6 mA (typical) @ 24 Vdc	
Maximum Response Time	OFF→ON	11 ms (2.5 ms typical)	
	ON→OFF	11 ms (2.5 ms typical)	
Power Required	+5 V	27 mA	
	+4.3 V	1.2 mA	
	-5 V	15 mA	
External Power Supply		24 Vdc 4 V @ 200 mA max (Vs)	
Terminal Connector		AS-8534-000	

B825–016 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

	Value
•	BIT (%I-1X)
	1
	16
•	BINARY
	Birt

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Input Type	BINARY	BCD	

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3x	%IWx
Input Type	BIN/BCD	BIN/BCD

B826–032 24 Vdc Output (True High)

35

B826–032 Parameter Configuration

Parameter and Default Values Parameter Configuration Window

32-OUT TH

Config		
Parameter Name	Value	
r MAPPING	BIT (%M-0X)	•
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	32	
OUTPUT TYPE	BINARY	•
1 : 140 XBP . 3 : B826		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	32	2	
Output Type	BINARY	BCD	

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 32 bits output	Mapped as 32 bits output
Туре	0x	%Mx
	or	or
	Mapped as 2 registers output	Mapped as 2 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B827-032 24 Vdc Input (True High)

36

At a Glance Purpose This chapter describes the functional and physical characteristics of the B827-032 24 Vdc (True High) Input Module. What's in this This chapter contains the following topics: Chapter? Topic Page B827-032 24 Vdc Input (True High), Overview 404 B827-032 24 Vdc Input (True High), Field Connections 405 B827-032 24 Vdc Input (True High), Specifications 406 B827-032 Parameter Configuration 407

B827-032 24 Vdc Input (True High), Overview

B827-032 24 Vdc Input (True High), Field Connections

B827-032 module.

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the

Terminal Numbering and Input Connections

B827-032 24 Vdc Input (True High), Specifications

Specification	
Table	

The following table provides the specifications for the unit.

B827–032 Specifications			
Description		24 Vdc high density input	
Type of Operation		True high	
Number of Points		32	
Operating Voltage		18—30 Vdc	
Number of Groups		1	
Outputs/group		32	
ON Level Input Voltage		≥22.5 Vdc or.75 of Vs, whichever is less	
OFF Level Input Voltage		≤4.5 Vdc or.25 of Vs, whichever is greater	
Input Resistance	On State	8—11 kΩ	
	Off State	6—8 kΩ	
Maximum Response Time	OFF→ON	0.4 ms	
	ON→OFF	1 ms)	
Power Required +5 V		30 mA	
	+4.3 V	1 mA	
	-5 V	0 mA	
External Power Supply Supply Voltage		18—30 Vdc continuous 40 Vdc peak for 10 ms surge	
	Supply Current	60 mA max over an 18—30 Vdc range	
Terminal Connector		AS-8535-000	
Fuse		0.25 A	

B827–032 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config		
Parameter Name	Value	
· MAPPING	BIT (%I-1X)	
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	32	
· INPUT TYPE	BINARY	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	32	2	
Input Type	BINARY	BCD	

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 32 bits input	Mapped as 32 bits input
Туре	1x	%lx
	or	or
	Mapped as 2 registers input	Mapped as 2 words input
	3x	%IWx
Input Type	BIN/BCD	BIN/BCD

B828-016 5 V TTL Output

37

At a Glance

Purpose	This chapter describes the functional and physical characte 5 V TTL Output Module.	ristics of the B828–016
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B828–016 5 V TTL Output, Overview	410
	B828–016 5 V TTL Output, Field Connections	411
	B828–016 5 V TTL Output, Specifications	412
	B828-016 Parameter Configuration	413

B828-016 5 V TTL Output, Overview

GeneralThe B828–016 5 V TTL Output Module converts logic signals used within the
controller into sixteen independent 5 V TTL outputs. These outputs are compatible
with TTL and DTL logic as well as other loads such as LED displays. The module
uses sixteen transistor switches which are capable of sinking load currents up to 75
mA supplied from an external 5 Vdc power source.

Simplified Schematic Following is a simplified schematic of the B828-016 5 V TTL Output Module.

B828–016 5 V TTL Output, Field Connections

B828–016 5 V TTL Output, Specifications

Specification Table

The following table provides the specifications for the unit.

B828–016 Specifications			
Description		5 V TTL output	
Number of Points		16	
Operating Voltage		5 V TTL	
Number of Groups		1	
Outputs/group		16	
ON Level		4.0 Vdc min @ 1 mA source, 5 Vdc supply @ 4.75 Vdc	
OFF Level		0.4 Vdc max @ 75 mA rated current: sinking 75 mA max., continuous, 100 mA peak (10 ms, 20% duty cycle)	
Maximum Response Time	OFF→ON	1 ms	
	ON→OFF	1 ms)	
Power Required	+5 V	32 mA	
	+4.3 V	220 mA	
	-5 V	0 mA	
External Power Supply		5.0 0.25 Vdc, 600 mA max outputs ON	
Terminal Connector		AS-8534-000	
Fusing		One/group, 1.5 A	

B828–016 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

5VTTL 16-OUT	
Config	
Parameter Name	Value
r MAPPING	BIT (%M-0X)
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	16
·OUTPUT TYPE	BINARY 🗸
1 : 140 XBP 3 : B828	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	16	1	
Output Type	BINARY	BCD	

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits output	Mapped as 16 bits output
Туре	0x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B829–116 Fast Response 5 V TTL Input

38

At a Glance Purpose This chapter describes the functional and physical characteristics of theB829-116 Fast Response 5 V TTL Input Module. What's in this This chapter contains the following topics: Chapter? Topic Page B829-116 Fast Response 5 V TTL Input, Overview 416 B829-116 Fast Response 5 V TTL Input, Field Connections 417 B829-116 Fast Response 5 V TTL Input, Specifications 418 B829-116 Parameter Configuration 419

B829–116 Fast Response 5 V TTL Input, Overview

B829–116 Fast Response 5 V TTL Input, Field Connections

B829–116 Fast Response 5 V TTL Input, Specifications

Specification Table The following table provides the specifications for the unit.

B829–116 Specifications		
Description		5 V TTL 16-point
Number of Points		16
Operating Voltage		5 V
Number of Groups		1
Outputs/group		16
Input Ratings	ON Level	VIH=2.0 Vdc (minimum)
		IIL=0.1 mA (max) @ VIH=5.5 Vdc
		V (source)=5.0 Vdc
		V (max input)=8.0 V
		I (max positive clamp)=25 mA
	OFF Level	VIL=0.8 Vdc (maximum)
		IIL=1.1 mA (maximum) @ V
		(source)=5.25 Vdc and VIL=0.0 V
		V (max negative input)= -2 Vdc
		1 (max negative clamp)=15 mA
Transient Voltage		100 V for 10 ms
Maximum Response Time	OFF→ON	1 ms
	ON→OFF	1 ms)
Power Required	+5 V	21 mA
	+4.3 V	1 mA
	-5 V	0 mA
External Power Supply		5.0 0.25 Vdc, 325 mA all inputs ON
Terminal Connector		AS-8534-000

B829–116 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config		
Parameter Name	Value	
r MAPPING	BIT (%I-1X)	
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	16	
· INPUT TYPE	BINARY	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Input Type	BINARY	BCD	

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 Word input
	3х	%IWx
Input Type	BIN/BCD	BIN/BCD

B832–016 24 Vdc Output (True Low)

39

At a Glance		
Purpose	This chapter describes the functional and physical characteristic 24 Vdc (True Low) Output Module.	s of the B832–016
What's in this Chapter?	This chapter contains the following topics:	
onapter .	Торіс	Page
	B832-016 24 Vdc Output (True Low), Overview	422
	B832–016 24 Vdc Output (True Low), Field Connections	423
	B832–016 24 Vdc Output (True Low), Specifications	424
	B832–016 Parameter Configuration	425

B832-016 24 Vdc Output (True Low), Overview

General
CharacteristicsThe Modicon B832–016 24 Vdc (True Low) Output Module consists of a single
group of 16 independent outputs. The B832–016 converts signals used within the
PLC into 16 independent 24 Vdc outputs. These outputs are capable of driving
indicators, relays, and a variety of other loads. Sixteen transistor switches are used
to control loads connected to an external power source.

Simplified Schematic Following is a simplified schematic of the B832–016 24 Vdc (True Low) Output Module.

B832–016 24 Vdc Output (True Low), Field Connections

B832-016 24 Vdc Output (True Low), Specifications

Specification Table The following table provides the specifications for the unit.

B832–016 Specifications		
Description		24 Vdc output
Type of Operation		True low
Number of Points		16
Operating Voltage		20—28 Vdc
Peak Voltage		33 Vdc for 1 s
Number of Groups		2
Outputs/group		8
On Current	Maximum/point	250 mA
	Surge Current	1 A for 10 ms
	Maximum/group	2 A
	Maximum/module	4 A
Off Current		0.5 mA maximum
On Voltage Drop		0.5 Vdc maximum/output @ 250 mA
Maximum Response Time	OFF→ON	1 ms
	ON→OFF	1 ms)
Power Required	+5 V	32 mA
	+4.3 V	235 mA
	-5 V	0 mA
External Power Supply		24 Vdc, 4 V, 600 mA (excluding field load current)
Terminal Connector		AS-8534-000
Fusing		1/module, 6 A

B832–016 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config		
Parameter Name	Value	
· MAPPING	BIT (%M-0X)	
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	16	
·OUTPUT TYPE	BINARY	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	16	1	
Output Type	BINARY	BCD	

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits output	Mapped as 16 bits output
Туре	0x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B833–016 24 Vdc Input (True Low)

Overview				
Purpose	This chapter describes the functional and physical characteristic 24 Vdc (True Low) Input Module.	cs of the B833–016		
What's in this	This chapter contains the following topics:			
Chapter?	Торіс	Page		
	B833–016 24 Vdc Input (True Low), Overview	428		
	B833–016 24 Vdc Input (True Low), Field Connections	429		
	B833–016 24 Vdc Input (True Low), Specifications	430		
	B833-016 Parameter Configuration	431		

B833-016 24 Vdc Input (True Low), Overview

 General
 The B833–016 24 Vdc (True Low) Input Module consists of two groups of eight independent inputs. The B833–016 senses and converts switched input signals into logic voltage levels used by the PLC.

 Inputs can be received from push buttons, limit and proximity switches, and other 24 Vdc sources. The module provides 16 inputs that share an external power supply. Input voltages are sensed by comparing the incoming voltage against a fixed threshold.

SimplifiedFollowing is a simplified schematic of the B833-016 24 Vdc (True Low) InputSchematicModule.

B833-016 24 Vdc Input (True Low), Field Connections

B833–016 24 Vdc Input (True Low), Specifications

Specification Table

The following table provides the specifications for the unit.

B833–016 Specifications			
Description		24 Vdc true low input	
Type of Operation		True low	
Number of Points		16	
Operating Voltage		20—28 Vdc	
Number of Groups		2	
Outputs/group		8	
Maximum Input Voltage		100 Vdc for 3 ms	
ON Conditions		≤2.6 Vdc or .13 of Vs, whichever is greater. 200Ω max resistance to common. Input indicator ON.	
OFF Conditions		≥21 Vdc or .75 of Vs, whichever is less. 10,000Ω min resistance to common. Input indicator OFF.	
Maximum Response Time	OFF→ON 11 ms		
	ON→OFF	11 ms)	
Power Required	+5 V	27 mA	
	+4.3 V	2 mA	
	-5 V	0 mA	
External Power Supply		24 Vdc, 4 V, 300 mA (excluding field load current)	
Terminal Connector		AS-8534-000	

i

B833–016 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Value	
BIT (%I-1X)	•
1	
16	
BINARY	•
	BIT (%I-1X) 1 16

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Input Type	BINARY	BCD	

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3x	%IWx
Input Type	BIN/BCD	BIN/BCD

B836–016 12—250 Vdc Isolated Output

41

At a Glance Purpose This chapter describes the functional and physical characteristics of the B836-016 12-250 Vdc Isolated Output Module. What's in this This chapter contains the following topics: Chapter? Topic Page B836-016 12-250 Vdc Isolated Output, Overview 434 B836-016 12-250 Vdc Isolated Output, Field Connections 435 B836-016 12-250 Vdc Isolated Output, Specifications 437 B836-016 Parameter Configuration 438

B836-016 12-250 Vdc Isolated Output, Overview

General The B836-016 12-250 Vdc Isolated Output Module accepts up to 16 signals from Characteristics a 984 PLC and converts them to independent outputs. The module's essential function is to switch one or more field circuits OFF At any given time, one or more output channel's signals may be in a true high configuration while one or more of the remaining output channel's signals are in a true low configuration. The output signals are capable or driving displays, relays. lamps, or any load connected to a 12-250 Vdc user supplied voltage source. Finally, the module is fused against overload currents and protected from accidental polarity reversal. Since all of the16 circuits are the same, describing one circuit's function describes the module's function Data commands from the controller are shipped via OURBUS to the OBS communications chip in the B836-016 module via Modicon's standard data interface. The OBS chip directs the signal to the addressed channel which in turn feeds the transistor driver, couples through the ISOGATE and turns the field effect transistor (FET) switch on. Since the circuit is a completely floating arrangement, it is equally useful in a true high (sourcing) or true low (sinking) configuration.

Following is a simplified block diagram of the B836–016 12–250 Vdc Isolated Output Module.

Note: Certain large inductive load conditions may require external reverse diodes placed directly across the load for complete circuit protection.

B836-016 12-250 Vdc Isolated Output, Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following figure shows the terminal numbering and output connections required.

Terminal Numbering and Output Connections

CHAN 1 + ① + ·<	0.0		0 1	•
	CHAN 1 - CHAN 2 + CHAN 2 - CHAN 3 + CHAN 3 - CHAN 4 + CHAN 4 - NC NC NC NC NC CHAN 5 + CHAN 5 - CHAN 5 - CHAN 6 - CHAN 7 + CHAN 7 + CHAN 8 +	00466000000000000000000000000000000000	CHAN 9 - CHAN 10 + CHAN 10 - CHAN 11 + CHAN 11 - CHAN 12 + CHAN 12 - NC NC NC NC NC CHAN 13 + CHAN 13 + CHAN 13 - CHAN 14 + CHAN 15 + CHAN 15 - CHAN 16 +	©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©

The following figure shows an example of typical user-side field connector circuitry.

Typical User-Side Field Connector Circuitry

B836-016 12-250 Vdc Isolated Output, Specifications

Specifications

B836–016 Specifications

	12-250 Vdc isolated output	
S	16	
le	12—250 Vdc	
os	16	
	1	
Current	0.75 A (typical) @ 250 Vdc	
	1 A (typical) @125 Vdc	
	1.5 A (typical) @ 48 Vdc	
	5.0 A max (for 10 ms @ 1 s repetition rate)	
eakage Current	1 mA	
Current	5 mA	
e Drop	3. V max @ 1.50 A	
t Current	8.0 A dc total switched current (all channels cumulative)	
Current	15.0 mA dc (lower current des not guarantee indicator operation)	
OFF→ON	1 ms	
ON →OFF	5 ms	
+5 V	50 mA	
+4.3 V	603 mA	
-5 V	0 mA	
ctor	AS-8535-000	
	1/group, 4 A	
	e bs Current eakage Current current b Drop t Current Current Current OFF \rightarrow ON ON \rightarrow OFF +5 V +4.3 V -5 V	

B836–016 Parameter Configuration

Parameter and **Default Values**

Parameter Configuration Window

16-OUT	
Config	
Parameter Name	Value
MAPPING	BIT (%M-0X)
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	16
OUTPUT TYPE	BINARY 🗸
1 : 140 XBP 3 : B836	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	16	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits output	Mapped as 16 bits output
Туре	0x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B837–016 24 Vac/Vdc Input (True High)

42

At a Glance		
Purpose	This chapter describes the functional and physical characteristics 24 Vac/Vdc (True High) Input Module.	of the B837–016
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
Chapter ?	Topic B837–016 24 Vac/Vdc Input (True High), Overview	Page 440
Gnapter ?	•	
Chapter ?	B837–016 24 Vac/Vdc Input (True High), Overview	440

B837–016 24 Vac/Vdc Input (True High), Overview

General
CharacteristicsThe B837–016 24 Vac/Vdc (True High) Input module senses OFF and ON input
signals from its field circuitry and converts them to logic levels used by a Modicon
PLC. The module's 16 inputs are separated into two groups of eight channels, each
group being totally isolated from the other.
Although both groups use common return wires, none has a definite relationship to
system ground unless established in the user's field circuitry. Since both groups
nominally employ independent power return sources, both ac and dc powered field
circuits may input to the module at the same time.

Simplified Schematic Diagram

Following is a simplified block diagram of the B837–016 24 Vac/Vdc (True High) Input Module.

When the user's ac/dc powered field circuit goes ON - as the result of a limit switch for example - it presents the field power voltage at the modules appropriate input channel. When the input voltage meets or exceeds the module's **guaranteed** ON threshold, the resulting voltage turns the channel monitor lamp ON, current flows through the bridge rectifier and subsequently the opto-isolator (OPTO-ISOL) circuit. Given a nominal 24 V field power supply and 1000Ω maximum input source impedance, the module's channel monitor lamps will indicate ON and OFF when voltages are 20.4 Vac/19.2 Vdc for the high level ON; and 6 Vac/10 Vdc for the low level OFF respectively. The optical energy goes to the communications board (COMM BOARD) where the Ourbus output register is set to represent the field circuit's ON state. As long as the field input status remains true, the module will communicate this status each time it is polled by the controller.

Note: Reversal of external signal polarity will not cause channel circuit damage as circuit design is indifferent to accidental polarity reversal.

B837-016 24 Vac/Vdc Input (True High), Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Input Connections The following diagram shows terminal numbering and input connections for the B837–016 24 Vac/Vdc True High Input Module.

Note: To use both input groups with a single power supply, jump terminals #9 and #19.

B837-016 24 Vac/Vdc Input (True High), Specifications

Specification Table The following table provides the specifications for the unit.

B837-016 Specification	າຣ	
Description		24 Vac/dc input
Number of Points		16
Operating Voltage		20.4—27 Vac/47—63 Hz; 19.2—30 Vdc
Number of Groups		2
Outputs/group		8
Maximum Input Voltage	Continuous	27 Vac/30 Vdc)
	Inrush	32 Vac/36 Vdc for 10s; 58 V peak 10 ms
ON Conditions		≥ 20.4 Vac or 19.2 Vdc with input source impedance of 1 k maximum input current 10 2 mA
OFF Conditions		< 6 Vac/10 Vdc < 27 Vac with input source impedance ≥15 k < 30 Vdc with input source Impedance ≥30 k
Input ON Current		10 mA (max), 5 mA (minimum)
Maximum Response Time	OFF→ON	6 ms
	ON→OFF	18 ms
Power Required	+5 V	40 mA
	+4.3 V	1 mA
	-5 V	15 mA
External Power Supply		24 Vac/dc, 300 mA
Terminal Connector		AS-8534-000

B837–016 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config		
Parameter Name	Value	
MAPPING	BIT (%I-1X)	•
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	16	
· INPUT TYPE	BINARY	•

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 register	Mapped as 1 word input
	Зх	%IWx
Input Type	BIN/BCD	BIN/BCD

B838–032 24 Vdc Output (True High)

43

At a Glance		
Purpose	This chapter describes the functional and physical characteristic 24 Vdc (True High) Output Module.	s of the B838–032
What's in this Chapter?	This chapter contains the following topics:	
	Торіс	Page
	B838–032 24 Vdc Output (True High), Overview	446
	B838–032 24 Vdc Output (True High), Field Connections	447
	B838–032 24 Vdc Output (True High), Specifications	448
	B838–032 Parameter Configuration	449

B838-032 24 Vdc Output (True High), Overview

General Characteristics	The B838–032 24 Vdc (True High) Output Module consists of a four groups of eight outputs for a total of 32 outputs. The B838–032 converts logic signals used within the PLC into 32 24 Vdc outputs. Outputs are capable of driving relays, pilot lamps, and other loads rated at 1/4 A. Each group of eight share an external supply voltage and is fused at 6.3 A. The outputs are designed to withstand the extreme voltage transients often encountered in an industrial environment.
Simplified Schematic	Following is a simplified schematic of the B838–032 24 Vdc (True High) Output Module.

B838-032 24 Vdc Output (True High), Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Output Connections The following diagram shows terminal numbering and output connections for the B838–032 24 Vdc (True High) Output Module

B838–032 24 Vdc Output (True High), Specifications

Specification The following table provides the specifications for the unit.

. Table

B838–032 Specification	IS		
Description		24 Vdc output	
Type of Operation		True High	
Number of Points		32	
Operating Voltage		20—30 Vdc	
Number of Groups		4	
Outputs/group		8	
Load Voltage	Ripple Voltage	4.0 peak to peak @ 10 kHz or less	
	Peak Voltage	33 V max	
	ON State Voltage Drop	1.0 Vdc @ 1/2 A @ full power	
Load Current	Continuous Current	0.50 A max / output, 16 A/module maxi-mum	
	Surge Current	The surge current of the B838 is 2.5 A for 0.5 ms, and should not be exceeded. If a short circuit (momentary or sustained) ex-ists, the FET on the output may fail prior to the group fuse blowing. Modicon recommends one of the following options to protect the outputs:1) Add external fuses to each output (1 - 1.5 A fast blow),2) Add external current limiting resistors to protect the output FET	
Lamp Loads	l	Up to 5 W	
Inductive Load Clamp Vo	oltage	-20 V nominal	
Inductive Clamp Current		1/2 A peak, 0.6 Hz up to 3.0 Hz	
Fast Contactor Turn Off		<60 ms with a 3.0 Hz load	
Off State Leakage Curre	nt	1 mA max @ 30 Vdc	
Maximum Response Time (Resistive Load)	OFF→ON	1 ms	
	ON→OFF	1 ms	
Power Required	+5 V	160 mA	
	+4.3 V	1 mA	
Power Required (Cont.)	-5 V	0 mA	
External Power Supply	·	24 Vdc 4 V, 125 mA (excluding field load current	
Terminal Connector		AS-8535-000	

B838–032 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

32-OUT		
Config		
Parameter Name	Value	
r MAPPING	BIT (%M-0X)	•
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	32	
·OUTPUT TYPE	BINARY	•

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	32	2	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 32 bits output 0x	Mapped as 32 bits output %Mx
	or Mapped as 2 registers output 4x	or Mapped as 2 words output % MWx
Output Type	BIN/BCD	BIN/BCD

B840–108 Relay Output

44

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B840–104 Relay Output Module.			
What's in this Chapter?	This chapter contains the following topics:			
	Торіс	Page		
	B840–108 Relay Output, Overview	452		
	B840-108 Relay Output, Field Connections	454		
	840–108 Relay Output, Specifications	455		
	B840–108 Parameter Configuration	456		

B840–108 Relay Output, Overview

General The B840–108 Relay Output Module converts signals from the 800 Series Ourbus Characteristics to eight independent relay outputs. Each output is capable of driving relays, pilot lamps, or other loads up to 2 A. The module utilizes eight high-reliability mercury-wetted relays to control the loads. Each of the eight outputs is electrically isolated from the I/O bus and from the other seven outputs by the relay coil. These outputs are capable of switching 100 VA maximum instantaneous power associated with ac or dc loads. Such devices may range from relays and pilot lamps to multiplexed low level analog signals. Each output has an RC snubber to protect the mercury wetted contacts from arcing caused by rapid rate of rise of applied voltage from inductive loads upon instantaneous opening of the contacts. The output signals can withstand severe voltage transients that may be encountered in industrial environments-i.e., the voltage transients will not propagate through the relay to the Ourbus, thus protecting all other controller system components from damage. All output circuits are also fused to protect against overload currents.

Simplified Schematic Diagram

Following is a simplified schematic diagram of the B840–108 Relay Output Module.

4 Amp

Relay 1

n 1A

o 1B

The module is user–configurable as to setting up for normally–open or normally– closed operation of the relays as described below. You can also optionally configure the RC snubber circuit to remove it when minimal leakage current applications such as data multiplexing are being used. The logic interface chip samples the eight logic level signals simultaneously from the PLC on each scan and holds these samples to drive the appropriate reed relay coil. Assuming a normally–open jumpered configuration, when the relay coil is energized, the reed relay contacts conduct current from the output A terminal to the output B terminal.

Configuration The B840–108 Relay Module is initially shipped with all 8 channels jumpered for the normally-open configuration with all snubber circuits connected. You may wire any of the channels for either normally-open or normally-closed operation by transferring a wire jumper from one tab to another on the printed circuit board to change from normally-open to normally-closed

The following illustration shows the user wiring configuration for the B840–108 Relay Module

	RELAY			SNUBBER	
CHAN	N.O.	N.C.	CHAN	IN	OUT
	W1-E2	W1-E1			
1			1	JP1	JP1
0	W2-E4	W2-E3			
2			2	JP2	JP2
	W3-E6	W3-E5			
3			3	JP3	JP3
	W4-E8	W4-E7			
4			4	JP4	JP4
5 W	W5-E10	W5-E9			
			5	JP5	JP5
	W6-E12	W6-E11			
6			6	JP6	JP6
	W7-E14	W7-E13			
7			7	JP7	JP7
	W8-E16	W8-E15			
8			8	JP8	JP8

The snubber circuits are disconnected by removing the (JP1-JP8) appropriate jumper. Refer to the label on the side of the module.

B840–108 Relay Output, Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Output Connections The following diagram shows terminal numbering and output connections for the B840–108 Relay Output Module.

Note: Since each output is isolated from the remaining outputs, separate power sources can be used for each load. Each output can be wired for current source or current sink operation.

Note: It is possible to have the ACTIVE indicator lit when one or more output channels are working improperly

840–108 Relay Output, Specifications

Specification Table

The following table provides the specifications for the unit.

840–108 Specifications			
Description		Reed Relay (NO/NC) output, isolated circuits,	
		sink or source current	
Number of Points		8	
Operating Voltage		0-300 Vdc max 0-230 Vac max./47-63 Hz	
Number of Groups		8	
Outputs/group		1	
Maximum Load Current	Carrying (unswitched)	3 A max)	
	Switching	2.0 max (0.3 A @ 300 Vdc	
Switching Capability	1	100 VA max	
Contact Resistance		< 150 m Ω (including fuse, pc clad, wire, connectors, and contacts)	
Open Circuit Impedance Connected	(Snubber Circuits	20 KΩ + 5 KΩ capacitive reactance @ 60 Hz	
Maximum Response Time	OFF→ON	6 ms (2 ms typical)	
	ON→OFF	6 ms (2 ms typical)	
Power Required	+5 V	67 mA	
	+4.3 V	400 mA	
	-5 V	0 mA	
Relay Life Rating	1	1 billion operations @rated load @ 25°C	
Terminal Connector		AS-8534-000	
Fusing		1 / group, 4 A	

B840–108 Parameter Configuration

Parameter and **Default Values**

Para

rameter (Configuratio	on Window
-----------	--------------	-----------

REED RELAY NO		
Config		
Parameter Name	Value	
r MAPPING	BIT (%M-0X)	•
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	8	
•OUTPUT TYPE	BINARY	•
1 : 140 XBP . 3 : B840		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	8	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 8 bits output	Mapped as 8 bits output
Туре	0x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B842–008 Reed Relay Output

45

At a Glance Purpose This chapter describes the functional and physical characteristics of the B842-008 Reed Relay Output Module. What's in this This chapter contains the following topics: Chapter? Topic Page B842-008 Reed Relay Output, Overview 458 B842-008 Reed Relay Output, Field Connections 459 842-008 Reed Relay Output, Specifications 460 B842-008 Parameter Configuration 461

B842–008 Reed Relay Output, Overview

General Characteristics	The B842–008 Reed Relay Output Module, normaly closed, converts the signals used on the 800 Series OURBUS to 8 independent mercury wetted Reed Relay outputs capable of driving relays, pilot lamps, or other loads up to 2.0 amperes, or low level circuits such as analog multiplexing. The module uses eight high reliability mercury wetted Reed Relays to control loads Each output is electrically isolated from the I/O Bus and from the other seven outputs by the coil of the relay and will withstand the severe voltage transients normally encountered in industrial environments without damage or adverse effect on the controller. Self-contained resistor and capacitor snubber networks suppress transient voltages when inductive loads are driven and provides contact protection. The eight outputs are also fused to protect their circuitry against overload currents. The B842–008 Reed Relay Output Module is compatible with input modules.		
Simplified Schematic	Following is a simplified schematic of the B842–008 Reed Relay Output Module.		
	REED RELAY		

B842-008 Reed Relay Output, Field Connections

Overview This module performs in a rigid wiring system where the user connections are made to terminal strips attached to the front of the card basket. The I/O modules slide in slots of the card basket and make contact with the terminal strips via the mating connector.

User connections are made to standard screw-type terminals capable of securing up to two AWG 14 solid or straded wires per terminal. Terminals are numbered from one at the top to 20 at the bottom as shown in the figure.

The Data Bus connections are made via the standard OURBUS interface connector to a shielded backplane at the rear of the card basket. The module may be placed in any location in the I/O struction without interfering with any other module's operation. When the module is inserted into the card basket, it picks up a low impedance earth shield ground by connecting the module's shield to the backplane's earth shield ground.

Terminal Numbering and Output Connections The following figure shows typical circuit connections for power applications of the B842–008 module.

Note: Since each output is isolated from the remaining outputs, separate power sources can be used for each load. Each output can be wired for current source or current sink operations.

Note: It is possible to have the ACTIVE indicator lit with one or more output channels working improperly.

842–008 Reed Relay Output, Specifications

Specification Table The following table provides the specifications for the unit.

····· ································	The following table provides the specifications for the unit.			
842–008 Specifications				
Description		Reed Relay Output (NC)		
Number of Points		8		
Operating Voltage		300 V, max. VDC or Peak AC		
Number of Groups		8		
Outputs / group		1		
Maximum Load Current	Carrying	3 A max. continuous after closure		
	Switching	2 max.		
Switching Capability		100 VA max. instantaneous power		
Contact Resistance		< 100 mΩ		
OFF State Leakage Current		5 mA @ 120 VAC		
Maximum Response Time		6 ms max. (2 ms typical)		
Power Required	+5 V	5.06 +/- 0.32 VDC, 67 mA max.		
	-5 V	-5.06 +/- 0.26 VDC, 0 mA		
	V I/O	4.25 +/- 0.33 VDC, 400 mA max.		
Terminal Connector		AS-8534-000		
Fusing		1 / output, 3 A		
Protection		The B842-008 output module has a resistor- capacitor snubber network to protect contacts from transients due to switching inductive loads.		
Open Circuit Impedance		25 k capacitive reactance at 6 Hz		
Isolation Voltage		Between outputs and I/O Bus, between outputs and case, and outputs to outputs. 1500 VAC steady state max. (at 60 Hz) for 60 sec. 2500 VDC for 60 sec.		

Note: The module must be mounted in a upright position

B842–008 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

alues			

REED RELAY NC	
Config	
Parameter Name	Value
MAPPING	WORD (%MW-4X)
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	1
·OUTPUT TYPE	BINARY 🔻
1 : 140 XBP 3 : B842	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available	Description
Mapping	WORD (%MW-4X)	BIT (%M-0X)	
Outputs Starting Address	1	1	
Outputs Ending Address	1	8	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 8 bits output	Mapped as 8 bits output
Туре	0x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B849–016 48 Vac/Vdc Input (True High)

46

At a Glance		
Purpose	This chapter describes the functional and physical characteristics 48 V ac/dc (True High) Input Module.	of the B849–016
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B849–106 48 Vac/Vdc Input (True High), Overview	464
	B849–106 48 Vac/Vdc Input (True High), Overview B849–016 48 Vac/Vdc Input (True High), Field Connections	464 466

B849–106 48 Vac/Vdc Input (True High), Overview

GeneralThe B849–016 48 V ac/dc input module senses OFF and ON input signals from itsCharacteristicsThe B849–016 48 V ac/dc input module senses OFF and ON input signals from itsCharacteristicsfield circuitry, converting them to logic levels used by a PLC. The module's 16 input
circuits are divided into two groups of eight channels, each group totally isolated
from the other.
Although both groups use common return wires, none has a definite relationship to
system ground unless established in the user's field circuitry. Since both groups
nominally employ independent power return sources, both ac and dc powered field
circuits may input to the module at the same time.

Note: Reversal of external signal polarity will not cause channel circuit damage as circuit design is indifferent to accidental polarity reversal.

Simplified Block Following is a simplified block diagram of the B849–016 48 V ac/dc Input Module. Diagram

When the user's ac/dc powered field circuit goes ON — as the result of a limit for example — it presents the field power voltage at the modules appropriate input channel. When the input voltage meets or exceeds the module's guaranteed ON threshold, the resulting voltage turns the channel monitor lamp ON, current flows through the bridge rectifier and subsequently the opto-isolator (OPTO-ISOL) circuit. Given a nominal 115 Vac/125 Vdc field power supply and a k Ω maximum input source impedance, the module's channel monitor lamps will indicate ON and OFF when input voltages are 80 Vac/85 Vdc for the high level ON; and 35 Vac/40 Vdc for the low level OFF respectively.

The optical energy goes to the communications board (COMM BOARD) where the OURBUS output register is set to represent the field circuit's ON state. As long as the field input status remains true, the module will communicate this status each time it is polled by the controller. Total scan time may be as long as 250 ms. The user should not attempt to monitor events with a repetition rate greater than 1/s without analyzing his actual system, program, and scan time.

Note: It is possible to have the ACTIVE indicator lit with one or more input channels working improperly.

B849-016 48 Vac/Vdc Input (True High), Field Connections

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Input Connections The following diagram shows terminal numbering and input connections for the B849–016 48 V ac/dc Input Module.

Note: To use both input groups with a single power supply, jump terminals #9 and #19.

849–016 48 Vac/Vdc Input (True High), Specifications

Specification Table The following table provides the specifications for the unit.

849–016 Specifications			
Description		48 Vac/dc input	
Number of Points		16	
Operating Voltage		41—53 Vac / 47—63 Hz 39—58 Vdc	
Number of Groups		2	
Inputs/group		8	
Maximum Input Voltage	Continuous	53 Vac / 58 Vdc 63 Vac / 70 Vdc (for 10 s maximum) 110 Vpk (for 10 ms max)	
ON Conditions	ON Conditions	≥ 41 Vac or 39 Vdc w/Input Source Impedance of 1 K maximum input current 7.5 mA 2 mA	
OFF Conditions		< 15 Vac / 20 Vdc < 53 Vac w/Input Source Impedance ≥25 k < 58 Vdc w/Input Source Impedance ≥50 k	
ON Current		8 mA (max), 4.5 mA (minimum)	
Maximum Response Time	OFF→ON	6 ms	
ON→OFF		18 ms	
Power Required +5 V		40 mA	
+4.3 V -5 V		1 mA	
		15 mA	
External Power Supply		48 Vac/dc, 300 mA	
Terminal Connector		AS-8534-000	

B849–016 Parameter Configuration

Parameter and **Default Values**

. . .. Para

ameter	Configuration	Window	
--------	---------------	--------	--

48V AC/DC IN		
Config		
Parameter Name	Value	
r - · MAPPING	BIT (%I-1X)	•
L INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	16	
INPUT TYPE	BINARY	•
1 : 140 XBP . 3 : B849		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3х	%IWx
Input Type	BIN/BCD	BIN/BCD

B853–016 115 Vac/125 Vdc Input (True High)

47

At a Glance Purpose This chapter describes the functional and physical characteristics of Input Module 853-016 115 Vac/125 Vdc. What's in this This chapter contains the following topics: Chapter? Topic Page B853-016 115 Vac/125 Vdc Input (True High), Overview 470 B853-016 115 Vac/125 Vdc Input (True High), Field Connections 472 B853-016 115 Vac/125 Vdc Input (True High), Specifications 473 B853-016 Parameter Configuration 474

B853-016 115 Vac/125 Vdc Input (True High), Overview

General	True High Input Module B853–016 115-Vac/125-Vdc senses OFF and ON input signals from its field circuitry, converting them to logic levels used by a Modicon PLC. The module's 16 input circuits are divided into two groups of eight channels, each group being totally isolated from the other.		
Characteristics	Although both groups use common return wires, none has a definite relationship to system ground unless established in the user's field circuitry. Since both groups nominally employ independent power return sources, both ac and dc powered field circuits may directed to the module at the same time.		
	Note: Reversal of external signal polarity will not cause channel circuit damage as the circuit design is indifferent to accidental polarity reversal.		
Simplified Block	Following is a simplified schematic of the True High Input Module B853–016 115-		
Diagram	Vac/125-Vdc		
	From Field Connector		

Return to Connector

When the user's ac/dc powered field circuit goes ON—as the result of a limit switch, for example—it presents the field power voltage at the module's appropriate input channel. When the input voltage meets or exceeds the module's ON threshold, the resulting voltage turns the channel monitor lamp ON, current flows through the bridge rectifier and subsequently the opto-isolator (OPTO-ISOL) circuit. Given a nominal 115 Vac/125 Vdc field power supply and a k Ω maximum input source impedance, the module's channel monitor lamps will indicate ON and OFF when input voltages are 80 Vac/85 Vdc for the high level ON; and 35 Vac/40 Vdc for the low level OFF respectively.

The optical energy goes to the communications board (COMM BOARD) where the OURBUS output register is set to represent the field circuit's ON state. As long as the field input status remains true, the module will communicate this status each time it is polled by the controller. Total scan time may be as long as 250 ms. The user should not attempt to monitor events with a repetition rate greater than 1/s without analyzing his actual system, program, and scan time.

Note: It is possible to have the ACTIVE indicator lit with one or more input channels working improperly.

B853–016 115 Vac/125 Vdc Input (True High), Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Input Connections The following diagram shows terminal numbering and input connections for the B853–016 115 Vac/125 Vdc (True High) Input Module.

Note: To use both input groups with a single power supply, jump terminals #9 and #19.

B853–016 115 Vac/125 Vdc Input (True High), Specifications

Specification Table The following table provides the specifications for the unit.

853-016 Specifications				
Description		115 Vac/125 Vdc input		
Number of Points		16		
Operating Voltage		80—130 Vac/47— 63 Hz; 85—150 Vdc		
Number of Groups		2		
Inputs/group		8		
Maximum Input Continuous Voltage		130 Vac/150 Vdc		
	Surge	150 Vac/180 Vdc for 10 s; 280 V peak for 10 ms		
ON Conditions		≥ 80 Vac or 85 Vdc; w/Input Source Impedance of 1 K maximum input current 9 mA 2 mA		
OFF Conditions		< 35 Vac/40 Vdc; < 130 Vac w/Input Source Impedance ≥ 40 K; < 150 Vdc w/Input Source Impedance ≥ 80 K		
ON Current		7 mA (max), 4.5 mA (min)		
Maximum Response OFF→ON Time		6 ms		
ON→OFF		18 ms		
Power Required +5 V		40 mA		
	+4.3 V	1 mA		
	-5 V	15 mA		
Terminal Connector		AS-8534-000		

B853–016 Parameter Configuration

Parameter and **Default Values**

Parameter Configuration Window

125V DC IN		
Config		
Parameter Name	Value	
r - · MAPPING	BIT (%I-1X)	•
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	16	
INPUT TYPE	BINARY	•
1 : 140 XBP . 3 : B853		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3x	%IWx
Input Type	BIN/BCD	BIN/BCD

855–016 Intrinsically Safe Input

48

At a Glance Purpose This chapter describes the functional and physical characteristics of the 855-016 Intrinsically Safe Input Module. What's in this This chapter contains the following topics: Chapter? Topic Page B855-016 Intrinsically Safe Input, Overview 476 B855-016 Intrinsically Safe Input, Installation 477 B855-016 Intrinsically Safe Input, Specifications 481 B855-016 Parameter Configuration 483

B855–016 Intrinsically Safe Input, Overview

General Characteristics	The B855–016 Intrinsically Safe (fully isolated) Input Module accepts 16 switch closures or low impedance discrete inputs less than 100 Ω and operates in any 800 Series I/O slot. The B855 module monitors hazardous area contact closures. The B855 can operate in either continuously or intermittently hazardous environments containing acetylene, hydrogen, ethylene or methane gases; metal, coal or grain dust, and fibers. The B855–016 module meets Factory Mutual Standard FM 3610 for Intrinsically Safe Connections to Field Side Associated Apparatus. The B855–016 module has 16 discrete inputs. The inputs work in the range 11.4-12.6 Vdc, True Low.
	The B855-016 module has 16 discrete inputs. The inputs work in the range 11.4-

B855–016 Intrinsically Safe Input, Installation

Installation Procedure Installation of the B855–016 module involves unpacking the module, wiring the field connector, installing key pins, and mounting the module into the housing.

Step	Procedure
1	Remove the module from its shipping box and check for damage. If damaged, contact your vendor for instructions.
2	Ensure power to housing is OFF.
3	Designate the housing slot for this module.
4	Locate required connector assembly (Modicon Part number AS-8535-000). This assembly consists of two 20-pin connectors.
5	Referring to the hazardous area and safe area wiring diagram below, connect field side wiring to proper pins on the field connector. You must wire the hazardous area connections, pins 9-40, separately from the safe area connections. Wire the dc source to the safe area connections, pins 1 and 2. Refer to Caution, below.
6	Refer to the Intrinsically Safe Barrier Strip diagram below. Remove the two Phillips head screws from the top 20-pin connector of the AS-8535-000. Take the intrinsically safe barrier strip out of the white bag attached to the handle of the module. Place the intrinsically safe barrier strip on the left side of the top 20-pin connector between pins 3, and 8. Make sure the raised edge of the intrinsically safe barrier strip is facing away from the black wiring duct. Insert this subassembly inside the black wire duct while aligning the two screw holes. Insert the two Phillips head screws and tighten them down. Note: You must use key pins (shipped with this module) to meet Factory Mutual's requirements.
7	Referring to typical field circuit connections illustration, below, connect field side wiring to proper pins on the field connector. Note: The external 12 Vdc (5%) power supply for the module should be a minimum of 1.0 A
8	Insert the module into the housing, firmly but carefully, seating the edge connector in the backplane.
9	Secure module to housing using captive slotted mounting screws at the top and bottom of the module front panel.
10	Note: To meet Factory Mutual's requirements, Schneider Electric recommends the MD- 8741-000 Intrinsically Safe Barrier Strip.

HAZARDOUS AREA	NON-HAZARDOUS AREA Return 12V+
Class I, II, III Division 1 and 2	
Groups A - G	Intrinsically
	Intrinsically Safe Barrier INPUT 1
	I INPUT 1 Image: Constraint of the second
	RETURN 2 O 11 INPUT 3 O 12 RETURN 3 O 13
Switch Contacts	INPUT 4 0 14 5 RETURN 4 0 15 6 INPUT 5 0 16 7 RETURN 5 0 17 8
	INPUT 6 0 RETURN 6 0 INPUT 7 0 RETURN 7 0
	INPUT 8 0 22 RETURN 8 0 23 INPUT 9 0 24 RETURN 9 0 25 9 0 25 9 0 26
	INPUT 10 26 10 INPUT 10 0 27 11 INPUT 11 0 28 12
	RETURN 11 O 29 INPUT 12 O 30 RETURN 12 O 31 INPUT 13 O 32
	RETURN 13 0 33 14 INPUT 14 0 34 15 RETURN 14 0 35 16
	INPUT 15 0 36 Intrinsically RETURN 15 0 37 Safe INPUT 16 0 38 12 VDC INPUT
	RETURN 16 0 39 1 0 40

The following illustration shows the B855–016 hazardous area and safe area wiring.

The following illustration shows the B855–016 intrinsically safe barrier strip.

The following illustration shows the typical field circuit connections.

B855–016 Intrinsically Safe Input, Specifications

B855-016, Specific	ation Table				
Description		12 Vdc intrinsically safe input (true low)			
Number of Points		16 isolated			
Operating Voltage		11-4-12.6 Vdc			
Number of Groups		1			
Inputs/group		16			
Maximum Input Voltage	Continuous	Continuous			
		12 Vdc 5%			
	Surge	500 Vdc for 3 m			
ON State Conditions	-		tal impedance (3.9 mA @	,	
OFF State Condition	IS	An open circuit, lead	no less than 100,000 Ω (7	75 mA) approx. 8.95 V present on +	
Maximum Response Time	OFF → ON	DFF \rightarrow ON 1 ms			
	$ON \rightarrow OFF$	5 ms			
Power Required	+5 V	80 mA			
	+4.3 V	1.5 mA			
	-5 V	0 mA			
Leakage Current		< 1.5 mA			
Wattage Rating on t	he Module	1.8 W			
Maximum Input Volt Inputs	age @ Source	Not to exceed 500 Vdc for 3 ms to user source terminals			
Module Supply Voltage In		11.4 - 12.6 Vdc, 0.5 A max. load working 80 mA inrush current Minimum recommended power supply: 1.0 A			
Maximum Impedance Limitations	Group		L Inductance	C Capacitance	
	A & B		80 mH	1.0 mf	
	С		300 mH	3.0 mf	
D			700 mH	8.0 mf	
Note: These are Fac barriers to ensure co		uirements. Please	consult with your vendors	regarding field devices, wiring, and	
Terminal Connector AS-85		AS-8535-000	5-000		
Factory Mutual FM 3610		Requires use of key pins and MD-8741-000 barrier strip included with the module			

B855–016 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

16-IN SAFE		
Config		
Parameter Name	Value	
r MAPPING	BIT (%I-1X)	•
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	16	
·INPUT TYPE	BINARY	•
1 : 140 XBP 3 : B855		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3x	%IWx
Input Type	BIN/BCD	BIN/BCD

B862-001 Register Output

49

At a Glance Purpose This chapter describes the functional and physical characteristics of the B862-001 Register Output Module. What's in this This chapter contains the following topics: Chapter? Topic Page B862-001 Register Output, Overview 486 B862-001 Register Output, Switch Settings 487 B862-001 Register Output, Field Connections 488 B862-001 Register Output, Specifications 491 B862-001 Parameter Configuration 492

B862-001 Register Output, Overview

Overview

The B862–001 register output module provides a 5 V TTL or CMOS-compatible interface between a PLC and peripheral field devices. The B862–001 register output module operates in either BCD or binary mode.

The desired mode is operator selectable, with the 16-bit output either having BCD values in the range 0000 to 9999 or binary output in the range 0000 (HEX) to FFFF (HEX).

The B862-001 is a 4-channel register output module with four 16-bit registers. A channel is defined as a 16-bit data path. The channels can be configured as 4 BCD or 4 binary registers via an appropriate switch setting.

The module is organized in a group strobe arrangement with the 16 datalines associated at a given moment with one of the 4 strobe lines. Each strobe line addresses one of the devices on the data bus and enables it to transmit data to a given peripheral device to the exclusion of the other devices. The data lines are routed to all devices. The B862-001is operated in module-select mode. In module-select mode, all 4 data registers are transferred in a single OURBUS cycle. The following is a simplified block diagram of the unit.

B862-001 Register Output, Switch Settings

Switch Settings Two toggle switches are located at the top left of the module and are used to determine the type of communication with external devices. Both switches are user selectable 1. Bin/BCD Switch This toggle switch determines whether the output data is to be interpreted by the target devices as a BCD or a binary value. 2. Strobes Active Hi/Lo Switch This toggle switch allows selection of either true-hi or true-lo for stroping output data. **Note:** The relation between the I/O map selection, the BCD/binary switch setting, and the results at the output are summarized in the following table: Table The following table identifies the relationship between the switch and I/O Map facility. I/O Map Selection **B862 Switch Setting** Result BCD BCD Binarv Binary Binary Binary BCD BCD Erroneous BCD BCD Binarv

B862–001 Register Output, Field Connections

Terminal Numbering and Output Functions User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows how to field connect the unit.

				_
NOT USED	1	NOT USED	21	
NOT USED	2	NOT USED	22	
NOT USED	3	NOT USED	23	
DATA 1	4	 DATA 15	24	
DATA 2	5	 DATA 16	25	
DATA 3	6	 LOGIC GND	26	
DATA 4	7	 STROBE 1	Ø	
DATA 5	8	 STROBE 2	28	
DATA 6	9	 STROBE 3	29	
DATA 7	10	 STROBE 4	30	
DATA 8	(1)	 STROBE 5	31	
DATA 9	12	 STROBE 6	32	
DATA 10	13	 STROBE 7	<u>3</u> 3	
DATA 11	(14)	 STROBE 8	34	
DATA 12	(15)	 LOGIC GND	35	
DATA 13	(16)	 GND	36	
DATA 14	17	 NOT USED	37	
NOT USED	18	NOT USED	38	
NOT USED	(19)	NOT USED	39	
NOT USED	20	NOT USED	40	
	Ŭ	l	Ŭ	

Pull-up Resistor Connection

Pull-up resistors must be installed at the active device end to use the B862 output module. The value of the pull-up resistor depends upon the number of devices that are attached to the data bus, as explained below. Each output meets 0.4 V maximum at 16 mA for a logic low and 3.3 V minimum at 16 mA for a logic high. If the current limit has been exceeded, the pull-up resistor values should be adjusted within specification; otherwise, spurious results may be obtained. The following illustration indicates how the resistors are connected at the device end. For a single device consisting of 16 data lines, 16 1 k resistors are required, or, one 1 k resistor per data line. As additional devices are added to the data bus, the value of the pull-up resistor must be increased by 1 k. In other words, if two devices are used, the pull-up resistor must be 2 k, three devices require a 3 k pull-up, and so on, with the maximum number of 8 devices requiring 8 k of pull-up for each data line.

Pull-up Resistor Connection

Note: Increase pull-up resistor value by 1 k for each additional device.

B862-001 Register Output, Specifications

Specification Table

The following table provides the specifications for the unit.

B862-001 Specifications				
Description		TTL register output		
Number of Points		4 channels, 16 data lines		
Operating Voltage		5 V TTL		
Number of Groups		N/A		
Outputs/group		N/A		
Guaranteed Min. Le	vels	High State > 3.5 VDC		
		Low State < 0.4 VDC while sinking 16 mA		
Strobe Output Powe	er	Two TTL loads @ 5 VDC		
Strobe Width Timing	J	200 μs ±10%		
Response Time		11.3 ms between an OURBUS write and field update		
Power Required	+5 VDC I/O	100 mA max.		
	+4.3 VDC I/O	100 mA max.		
External Power Sup	ply	+5 VDC is required for pull-up resistor Vcc		
Field Device	TTL output level	Low: < 0.8 VDC @ 1.6 mA		
Requirements		High: > 2.4 VDC @ 40 μA		
	CMOS output level	Low: < 1.6 VDC @ 0.3 μA		
		High: > 3.3 VDC @ 0.3 μA		
Terminal Connector		AS-8535-000		

Note: All user field devices must have outputs that feature latched, tristate, or open collector logic.

Note: The user must provide 1.0 k Ω \pm 10% pull-up resistors for each strobe line.

B862–001 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config		
Parameter Name	Value	
··· MAPPING	BIT (%M-0X)	
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	64	
OUTPUT TYPE	BINARY	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	64	4	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 64 bits output	Mapped as 64 bits output
Туре	0x	%Mx
	or	or
	Mapped as 4 registers output	Mapped as 4 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B863–032 Monitored 24 Vdc Input

50

At a Glance Purpose This chapter describes the functional and physical characteristics of the Modicon B863-032 Monitored 24 Vdc Input Module. What's in this This chapter contains the following topics: Chapter? Page Topic B863-032 Monitored 24 Vdc Input, Overview 494 B863-032 Monitored 24 Vdc Input, Field Connections 495 B863-032 Monitored 24 Vdc Input, Specifications 496 B863-032 Parameter Configuration 497

B863–032 Monitored 24 Vdc Input, Overview

General
CharacteristicsThe B863–032 Monitored dc Input Module (B863) is a 32 point, 24 Vdc, true high,
800 Series, module capable of determining the state of switches, relays, solenoids,
lamps, proximity switches, and other 24 Vdc powered devices. In addition, the
B863–032 monitors itself to insure its ability to detect high or low states at its inputs.
This feature is designed to provide an extra margin of reliability in safety shutdown
systems. This is accomplished with a module resident diagnostic test. The
diagnostics verify the module's functionality by momentarily forcing all inputs to a
low state followed by a high state. This forcing function is transparent to the input
source.

Simplified Schematic

Following is a simplified schematic of the B863–032 Monitored 24 Vdc Input Module.

This diagnostic test is performed at a rate of 1/s, and takes less than 1 ms. The inability of an input to detect a low or high state during diagnostics, results in the reporting of a fault to the controller, and the flashing of the ACTIVE LED. Digital filtering is performed on all inputs to reduce the occurrence of nuisance faults. Communication between the module and the controller consists of four words. Two words contain the state of each input, and the other two words contain the fault status of each input. Within the state words, a high, or one indicates a ON condition. Within the fault status words, a high, or one indicates a fault at the respective input.

B863-032 Monitored 24 Vdc Input, Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal
Numbering and
Input
Connections

The following diagram shows terminal numbering and input connections for the B863–032 Monitored 24 Vdc Input Module.

NOTE: Pins 20 and 40 are internally connected together

B863–032 Monitored 24 Vdc Input, Specifications

Specifications

B863–032, Specification Table

Description		24 Vdc high density monitored input	
Type of Operation		True high	
Number of Points		32	
Operating Range Voltag	e	18-30 Vdc true high, 24 Vdc nominal	
Number of Groups		2	
Inputs/group		16	
On State Conditions		18 Vdc minimum @ the input,	
		30 Vdc maximum @ the input,	
		Typical on state current: 4 mA	
Off State Conditions		6 Vdc maximum @ the input,	
		Typical OFF state current: 1 mA	
Maximum Response Time	OFF→ON	10 ms	
	ON →OFF	10 ms	
Power Required	+5 V	0 mA	
	+4.3 V	0 mA	
	-5 V	0 mA	
External Power Supply	Operating Current	20 mA of field power plus point input channel	
	Operating Voltage	18-30 Vdc true high, 24 Vdc nominal	
Terminal Connector	1	AS-8535-000	
u			

▼

•

B863–032 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

-	
REG 4 CH IN	
Config	
Parameter Name	Value
r MAPPING	BIT (%I-1X)
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	64
·INPUT TYPE	BINARY

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	64	4	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 64 bits input	Mapped as 64 bits input
Туре	1x	%lx
	or	or
	Mapped as 4 registers input	Mapped as 4 words input
	3х	%IWx
Input Type	BIN/BCD	BIN/BCD

B863-132 24 Vdc Input

51

At a Glance

Title of overview block	This chapter describes the functional and physical characteristics of the B863- 24 Vdc Input Module.			
What's in this	This chapter contains the following topics:			
Chapter?	Торіс	Page		
	B863–132 24 Vdc Input, Overview	500		
	B863–132 24 Vdc Input, Switch Settings	501		
	B863–132 24 Vdc Input, Field Connections	502		
	B863–132 24 Vdc Input, Configuration	503		
	B863–132 24 Vdc Input, Specifications	504		
	B863-132 Parameter Configuration	505		

B863-132 24 Vdc Input, Overview

GeneralThe B863–132 24 Vdc Input Module senses and converts switched input signals into
logic voltage levels used by the PLC. This module senses and reports broken wire
faults. The module is designed for safety applications whereby it monitors essential
field wiring. This module satisfies applications where connectivity diagnostics are
important to the process. A logic side LED indicates the logic state that is written into
the state table.

Simplified Schematic Following is a simplified schematic of the B863–132 24 Vdc Input Module.

B863–132 24 Vdc Input, Switch Settings

Switch Settings A four-position DIP switch located on the rear of the module (see diagram below) is used to select broken wire testing. Each individual switch relates to one of the four groups of eight input points.

For example, DIP-Switch position #1 when set to OFF senses for broken wire faults for group 1 and so on; when set to ON no fault is reported.

Only Binary should be used when operating module in line test mode. Do not use BCD.

The line test dip-switch settings are shown below.

LINE TEST SWITCH FOUR-POSITION DIP SWITCH TOP OF MODULE

Note: When using binary and BCD inputs remember that input 1 is the MSB and input 32 is the LSB.

B863-132 24 Vdc Input, Field Connections

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

The following diagram shows terminal numbering and input connections for the B863–132 24 Vdc Input Module.

Terminal Numbering and Input Connections

IN IN	IPUT 1 (1) IPUT 2 (2) IPUT 3 (3) IPUT 4 (3)		GROUP 3 INPUT 17 INPUT 18 INPUT 19 INPUT 20	ଜ ଜ ଜ
GROUP 1 FI GROUP 1 IN IN	IELD V+ 3 IELD RET 6 IPUT 5 0 IPUT 6 3		GROUP 3 FIELD V+ GROUP 3 FIELD RET GROUP 3 INPUT 21 INPUT 22	ଷ ଦ୍ର ତ୍ର
IN GROUP 2 IN IN	IPUT 7 0 IPUT 8 0 IPUT 9 0 IPUT 10 0 IPUT 11 0	6.2KΩ EXTERNAL RESISTOR (BROKEN WIRE DETECTION)	INPUT 23 INPUT 24 GROUP 4 INPUT 25 INPUT 26 INPUT 27	8888
GROUP 2 FI GROUP 2 FI GROUP 2 IN IN	IPUT 12 Image: Constraint of the sector of		INPUT 28 GROUP 4 FIELD V+ GROUP 4 FIELD RET GROUP 4 INPUT 29 INPUT 30 INPUT 31 INPUT 32	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

B863–132 24 Vdc Input, Configuration

Configuration Guidelines This module appears as a B863 module when configured. This means the module requires four 16–bit words (1x registers), as shown in the data registers diagram below. The first two words contains the state of the input points. The second two words contain the condition of the field wiring. If a broken wire is detected on input point, then a one is displayed in input register (1x+32) at its position. When the fault is fixed, a zero appears in the bit. A one indicates a detected fault, whereas, a zero indicates normal operation of that input point.

B863–132 24 Vdc Input, Specifications

The following table provides the specifications for the unit.

	24 Vdc input 32 4 8 0-30 Vdc 19.2-30 Vdc 9-15 mA/group 11-15 Vdc
	4 8 0-30 Vdc 19.2-30 Vdc 9-15 mA/group 11-15 Vdc
	8 0-30 Vdc 19.2-30 Vdc 9-15 mA/group 11-15 Vdc
	0-30 Vdc 19.2-30 Vdc 9-15 mA/group 11-15 Vdc
	19.2-30 Vdc 9-15 mA/group 11-15 Vdc
	9-15 mA/group 11-15 Vdc
	11-15 Vdc
	(Prokon wire datast) 6.0 kg + 10% - 1 ovtornal register/input
	(Broken wire detect) 6.2 k Ω +10%, 1 external resistor/input point, resistor across contactor for nominally operated 24 Vdc system
w State	1.8- 3 mA
gh State	5.75-7.1 mA
1	V in = 20 Vdc: 200 ms minimum
	V in = 30 Vdc: 25 ms minimum
F	V in = 20 Vdc: 100 ms maximum
	V in = 30 Vdc: 250 ms maximum
F→ ON	2 ms, contact opening or closing, 100 ms maximum fault detection time
ON →OFF	
V	350 mA
.3 V	10 mA
V	0 mA (not used)
	AS-8535-000
i i i i i i i i i i i i i i i i i i i	The state $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$

B863–132 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

REG 4 CH IN		
Config		
Parameter Name	Value	
MAPPING	BIT (%I-1X)	•
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	64	
· INPUT TYPE	BINARY	•
1 : 140 XBP 3 : B863		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	64	4	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 64 bits input	Mapped as 64 bits input
Туре	1x	%Ix
	or	or
	Mapped as 4 registers input	Mapped as 4 words input
	Зх	%IWx
Input Type	BIN/BCD	BIN/BCD

B864–001 Register Output

52

At a Glance Purpose This chapter describes the functional and physical characteristics of the B864-001 Register Output Module. What's in this This chapter contains the following topics: Chapter? Topic Page B864-001 Register Output, Overview 508 B864-001 Register Output, Switch Settings 509 B864-001 Register Output, Field Connections 510 B864-001 Register Output, Specifications 513 B864-001 Parameter Configuration 514

B864-001 Register Output, Overview

Overview

The B864–001 register output module provides a 5 V TTL or CMOS-compatible interface between a PLC and peripheral field devices. The B864–001 register output module operates in either BCD or binary mode. The desired mode is operator selectable, with the 16-bit output either having BCD values in the range 0000-9999 or binary output in the range 0000- FFFF hex.

The B864-001 is an eight-channel register output module with eight 16-bit registers. A channel is defined as a 16-bit data path. The channels can be configured as eight BCD or eight binary registers via the appropriate switch setting.

The module is organized in a group strobe arrangement with the 16 datalines associated at a given moment with one of the eight strobe lines. Each strobe line addresses one of the devices on the data bus and enables it to transmit data to a given peripheral device to the exclusion of the other devices. The data lines are routed to all devices. The B864-001 is operated in module-select mode. In module-select mode, all eight data registers are transferred in a single ourbus cycle. The following is a simplified block diagram of the unit.

B864-001 Register Output, Switch Settings

Switch Settings Two toggle switches are located at the top of the module and are used to determine the type of communication with external devices. Both switches are user selectable. 1. Bin/BCD Switch This toggle switch determines whether the output data is to be interpreted by the target devices as a BCD or a binary value. 2. Strobes Active Hi/Lo Switch This toggle switch allows selection of either true-hi or true-lo for stroping output data. **Note:** The relation between the I/O map selection, the BCD/binary switch setting, and the results at the output are summarized in the following table: Table The following table identifies the relationship between the switch and I/O Map facility. I/O Map Selection **B864 Switch Setting** Result Binarv BCD BCD Binary Binary Binary BCD BCD Erroneous BCD BCD Binarv

B864–001 Register Output, Field Connections

Terminal Numbering and Output Functions User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows how to field connect the unit.

				_
NOT USED	1	NOT USED	21	
NOT USED	2	NOT USED	2	
NOT USED	3	NOT USED	23	
DATA 1	4	 DATA 15	24	
DATA 2	5	 DATA 16	2 5	<u> </u>
DATA 3	6	 LOGIC GND	26	
DATA 4	7	 STROBE 1	Ø	—
DATA 5	8	 STROBE 2	8	<u> </u>
DATA 6	9	 STROBE 3	29	—
DATA 7	10	 STROBE 4	30	<u> </u>
DATA 8	(1)	 STROBE 5	31	—
DATA 9	12	 STROBE 6	32	
DATA 10	(13)	STROBE 7	33	<u> </u>
DATA 11	(14)	 STROBE 8	34	—
DATA 12	15	 LOGIC GND	35	—
DATA 13	16	 GND	36	<u> </u>
DATA 14	17	 NOT USED	37	
NOT USED	18	NOT USED	38	
NOT USED	(19)	NOT USED	89	
NOT USED	20	NOT USED	40	
	•		•	

Pull-up Resistor Connection

Pull-up resistors must be installed at the active device end to use the B864 output module. The value of the pull-up resistor depends upon the number of devices that are attached to the data bus, as explained below. Each output meets 0.4 V maximum at 16 ma for a logic low and 3.3 V minimum at 16 mA for a logic high. If the current limit has been exceeded, the pull-up resistor values should be adjusted within specification; otherwise, spurious results may be obtained. The following illustration indicates how the resistors are connected at the device end.For a single device consisting of 16 data lines, 16 1 k resistors are required, or, one 1 k resistor/data line. As additional devices are added to the data bus, the value of the pull-up resistor must be increased by 1 k. In other words, if two devices are used, the pull-up resistor must be 2 k, three devices require a 3 k pull-up, and so on, with the maximum number of 8 devices requiring 8 k of pull-up for each data line.

Pull-up Resistor Connection

Note: Increase pull-up resistor value by 1 k for each additional device.

B864–001 Register Output, Specifications

Specification Table

The following table provides the specifications for the unit.

Module B864-001, Specification Table			
Description		TTL register output	
Number of Poir	its	8 channels, 16 data lines	
Operating Volta	ige	5 V TTL	
Number of Grou	ups	N/A	
Outputs/group		N/A	
Guaranteed Mir	n. Levels	High State>3.5 Vdc	
		Low State<0.4 Vdc while sinking 16 mA	
Strobe Output F	Power	Two TTL loads @ 5 Vdc	
Strobe Width Ti	ming	200 s 10%	
Module Throug	hput	11.3 ms	
Power	+5 V	100 mA	
Required			
	+4.3 V	100 mA	
	-5 V	0 mA	
External Power	Supply	A +5 Vdc external power supply is required for pull-up resistor VCC	
Field Device		Output Level	
Requirements			
	TTL	Low: 0<0.8 Vdc @ 1.8A	
		High: 1>2.4 Vdc @ 40A	
	CMOS	Low: 0<1.6 Vdc @ 0.3A	
		High: 1>3.3 Vdc @ 0.3A	
Terminal Conne	ector	AS-8535-000	

B864–001 Parameter Configuration

Parameter and **Default Values**

Para

amet	er Config	uration V	Vindow
------	-----------	-----------	--------

REG 8 CH OUT		
Config		
Parameter Name	Value	
MAPPING	BIT (%M-0X)	•
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	128	
OUTPUT TYPE	BINARY	•
1 : 140 XBP . 3 : B864		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	128	8	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 128 bits output	Mapped as 128 bits output
Туре	0x	%Mx
	or	or
	Mapped as 8 registers output	Mapped as 8 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B865–001 Register Input

53

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B865–00 Register Input Module.			
What's in this	This chapter contains the following topics:			
Chapter?	Торіс	Page		
	B865–001 Register Input, Overview	516		
	B865–001 Register Input, Switch Settings	518		
	B865–001 Register Output, Field Connections	519		
	B865–001Register Input, Specifications	522		
	B865-001 Parameter Configuration	524		
	L	I		

B865-001 Register Input, Overview

The B865-001 register input module provides a 5 V TTL or CMOScompatible interface between peripheral field devices and a PLC.The B865-001 is an eightchannel register module with eight 16-bit registers. A channel is defined as a 16-bit data path.

The module can operate in either BCD or binary mode. The desired mode is userselectable, with the parallel 16-bit input having BCD values in the range 0000- 9999 and the binary input in the range0000-FFFF.

The B865–001 operates in module-select mode, which updates the controller with eight input registers of new data samples on one scan period. The module-select feature ensures data integrity by sampling and comparing data from the user device twice during each channel's active strobe period. If the samples are equal, the data is accepted for further processing. If the samples are not equal, the old data is sent to the controller. If a channel has three consecutive no-compares, a 16-bitword containing all zeros is routed to the PLC.

The following diagram shows the schematic diagram for the B865–001 Register Input Module.

The B865–001 operates with a 16-bit data path. Data is routed from a device by means of a strobe line associated with each device. The datalines are common to all devices while the strobe performs the addressing function.

The DC (data changing) signal from the field device is used for slowly changing data such as thumb wheel switches, and prevents erroneous information from being transferred to the PLC. This input needs only be used for slowly changing data that may cause the capture of erroneous information. The DC input connection is made on terminal 18 of the module's field side wiring strip.

B865-001 Register Input, Switch Settings

Switch SettingsTwo toggle switches are located at the top of the module and are used to determine
the type of communication with external devices. Both switches are user selectable.
 1. Data Polarity Switch
 This toggle switch allows selection of true-hi or true-lo input data.
 2. Bin/BCD Switch
 This toggle switch determines whether the input data is to be interpreted by the
 controller as a BCD or a binary value.Note: The switch and I/O map relationship is summarized in the following table.

Table

The following table identifies the relationship between the switch and I/O map facility.

I/O Map Selection	B865 Switch Setting	Result
Binary	BCD	BCD
Binary	Binary	Binary
BCD	BCD	Erroneous
BCD	Binary	BCD

B865–001 Register Output, Field Connections

Terminal Numbering and Input Functions User connections are made to a standard screw terminal strip The rigid wiring system permits module insertion or removal without disturbing the wiring. Terminal numbering and input functions are shown on the following illustration.

			-		-
NOT USED	1		NOT USED	21	
NOT USED	2		NOT USED	22	
NOT USED	3		NOT USED	23	
DATA 1	4		DATA 15	24	
DATA 2	(4) (5)		DATA 16	25	<u> </u>
DATA 3	6		LOGIC GND	20	
DATA 4	7		STROBE 1	Ø	
DATA 5	8		STROBE 2	23	<u> </u>
DATA 6	9		STROBE 3	29	
DATA 7	10		STROBE 4	30	
DATA 8			STROBE 5	31	<u> </u>
DATA 9	1) 12 13		STROBE 6	32	
DATA 10	(13)		STROBE 7	62 63	
DATA 11	14		STROBE 8	34	<u> </u>
DATA 12	15		LOGIC GND	35	
DATA 13	10		GND	36	
DATA 14	17		NOT USED	37	
DATA CHANGE (DC)	(13)		NOT USED	33	
NOT USED	17 13 19		NOT USED	39	
NOT USED	ø		NOT USED	4 0	
	•	J	l	•]

The recommended location for the pull-up resistors is at the device end of the circuit. However, they will work at the module end as well.

The following illustration shows a typical circuit setup.

Strobe Type Strobe lines for the B865 module are true-low. The opposite is the case in other Modicon I/O modules. Therefore, when multiple thumb wheel inputs require diode isolation, the polarity of the diodes may have to be reversed.

B865–001Register Input, Specifications

	oor, opecificatio	
Description		TTL register input
Number of Points		8 channels, 16 data lines
Operating Volta	ge	5 V TTL
Number of Grou	ips	NA
Outputs/group		NA
Guaranteed Mir	n. Levels	High State>3.5 Vdc
		Low State<0.4 Vdc while sinking 16 mA
Strobe Output F	Power	2 TTL loads @ 5 Vdc
Strobe Width Ti	ming	2 mS 10%
Data Set-up Tin	ne	Within 180 s after the strobe has gone active (LO), data must have sta-bilized on the field side inputs
Minimum Data I	Hold Time	100 s must be provided by user
Maximum OFF→ON Response Time		20 ms
	ON →OFF	20 ms
Power Required	+5 V	400 mA
	+4.3 V	600 mA
	-5 V	0 mA
External Supply	,	A +5 Vdc external power supply is required for pull-up resistor VCC
Field Devices Requirements	Field Device	Output Level
	TTL	Low: 0 < 0.8 Vdc @ 1.6A
		High: 1 > 2.4 Vdc @ 40 A
	CMOS	Low: 0 < 1.6 Vdc @ 0.3 A
		High: 1 > 3.3 Vdc @ 0.3 A
Terminal Conne	ector	AS-8535-000
		I

Module	B865_001	Specification	Table
INIOUUIE	0000-001,	opecification	I able

Note: All user field devices must have outputs that feature latched, tri-state, or open collector, or wired or passive logic. The user must provide 2.2 k Ω 10% pullup resistors for each strobe line.

B865–001 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

REG 8 CH IN		
Config		
Parameter Name	Value	
r - · MAPPING	BIT (%I-1X)	•
¹ INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	128	
► INPUT TYPE	BINARY	•
1 : 140 XBP . 3 : B865		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%IW-3X)	
Inputs Starting Address	1	1	
Inputs Ending Address	128	8	
Input Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 128 bits input	Mapped as 128 bits input
Туре	1x	%lx
	or	or
	Mapped as 8 registers input	Mapped as 8 words input
	Зх	%IWx
Input Type	BIN/BCD	BIN/BCD

B868–001 Register Output

54

At a Glance

This chapter describes the functional and physical characteristics of the B868–00 ⁻ Register Output Module.			
This chapter contains the following topics:			
Торіс	Page		
B868–001 Register Output, Overview	526		
B868–001 Register Output, Switch Settings	527		
B868–001 Register Output, Field Connections	528		
B868-001 Register Output, Specifications	531		
B868-001 Parameter Configuration	532		
	Register Output Module. This chapter contains the following topics: Topic B868–001 Register Output, Overview B868–001 Register Output, Switch Settings B868–001 Register Output, Field Connections B868–001 Register Output, Specifications		

B868–001 Register Output, Overview

Overview

The B868–001 register output module provides a 5 V TTL or CMOS-compatible interface between a PLC and peripheral field devices. The B868–001 register output module operates in either BCD or binary mode.

The desired mode is operator selectable, with the 16-bit output either having BCD values in the range 0000 to 9999 or binary output in the range 0000 (HEX) to FFFF (HEX).

The B868-001 is a 8-channel register output module with four 16-bit registers and is operated in channel select mode. In the channel select mode, only one channel (16-bit register width) is transferred during each cycle. This is accomplished by employing a simple form of handshaking with the PC. A channel select word is sent by the PC to the B868 module, directing it to send a specific channel to the addressed field device. The B868 then echos back to the controller the channel address of the last valid transmission. Channel select requires 1 input and 2 consecutive output registers. The input register contains the channel number echo, while the output registers contain the channel address and the data. The following is a simplified block diagram of the unit.

B868–001 Register Output, Switch Settings

Switch Settings Two toggle switches are located at the top left of the module and are used to determine the type of communication with external devices. Both switches are user selectable 1. Bin/BCD Switch This toggle switch determines whether the output data is to be interpreted by the target devices as a BCD or a binary value. 2. Strobes Active Hi/Lo Switch This toggle switch allows selection of either true-hi or true-lo for stroping output data. **Note:** The relation between the I/O map selection, the BCD/binary switch setting, and the results at the output are summarized in the following table: Table The following table identifies the relationship between the switch and I/O Map facility. I/O Map Selection **B868 Switch Setting** Result BCD BCD Binarv Binary Binary Binary BCD BCD Erroneous BCD BCD Binarv

B868–001 Register Output, Field Connections

Terminal Numbering and Output Functions User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows how to field connect the unit.

		_		_
NOT USED	1	NOT USED	21	
NOT USED	2	NOT USED	2	
NOT USED	3	NOT USED	23	
DATA 1	4	 DATA 15	24	
DATA 2	5	 DATA 16	25	
DATA 3	6	 LOGIC GND	26	
DATA 4	7	 STROBE 1	Ø	
DATA 5	8	 STROBE 2	28	
DATA 6	9	 STROBE 3	29	
DATA 7	10	 STROBE 4	30	
DATA 8	(1)	 STROBE 5	31	
DATA 9	12	 STROBE 6	32	
DATA 10	12 13	 STROBE 7	33	
DATA 11	(14)	STROBE 8	34	
DATA 12	(15)	 LOGIC GND	35	
DATA 13	(16)	 GND	36	<u> </u>
DATA 14	17 18	NOT USED	37	
NOT USED	(18)	NOT USED	38	
NOT USED	(19	NOT USED	89	
NOT USED	20	NOT USED	40	
		l		

Pull-up Resistor Connection

Pull-up resistors must be installed at the active device end to use the B868 output module. The value of the pull-up resistor depends upon the number of devices that are attached to the data bus, as explained below. Each output meets 0.4 V maximum at 16 mA for a logic low and 3.3 V minimum at 16 mA for a logic high. If the current limit has been exceeded, the pull-up resistor values should be adjusted within specification; otherwise, spurious results may be obtained. The following illustration indicates how the resistors are connected at the device end. For a single device consisting of 16 data lines, 16 1 k resistors are required, or, one 1 k resistor per data line. As additional devices are added to the data bus, the value of the pull-up resistor must be increased by 1 k. In other words, if two devices are used, the pull-up resistor must be 2 k, three devices require a 3 k pull-up, and so on, with the maximum number of 8 devices requiring 8 k of pull-up for each data line.

Pull-up Resistor Connection

Note: Increase pull-up resistor value by 1 k for each additional device.

B868-001 Register Output, Specifications

Specification Table

The following table provides the specifications for the unit.

B868-001 Specificat	ions		
Description		TTL register output	
Number of Points		8 channels, 16 data lines	
Operating Voltage		5 V TTL	
Number of Groups		N/A	
Outputs/group		N/A	
Guaranteed Min. Lev	els	High State > 3.5 VDC	
		Low State < 0.4 VDC while sinking 16 mA	
Strobe Output Power		Two TTL loads @ 5 VDC	
Strobe Width Timing		200 μs ±10%	
Response Time		11.3 ms between an OURBUS write and field update	
Power Required	+5 VDC I/O	100 mA max.	
	+4.3 VDC I/O	100 mA max.	
External Power Supp	ly	+5 VDC is required for pull-up resistor Vcc	
Field Device TTL output level		Low: < 0.8 VDC @ 1.6 mA	
Requirements		High: > 2.4 VDC @ 40 μA	
	CMOS output level	Low: < 1.6 VDC @ 0.3 μA	
		High: > 3.3 VDC @ 0.3 μA	
Terminal Connector		AS-8535-000	

Note: All user field devices must have outputs that feature latched, tristate, or open collector logic.

Note: The user must provide 1.0 k Ω \pm 10% pull-up resistors for each strobe line.

B868–001 Parameter Configuration

Parameter and Default Values	Falameter	Configuration Window REG MUX OUT Config		
		Parameter Name	Value	
		r MAPPING	BIT (%I-1X%M-0X)	•
		INPUTS STARTING ADDRESS	1	
		INPUTS ENDING ADDRESS	16	
		► OUTPUTS STARTING ADDRESS	1	
		OUTPUTS ENDING ADDRESS	32	
		^r - OUTPUT TYPE	BINARY	▼
		1 : 140 XBP . 3 : B868		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I-1X%M-0X)	WORD (%IW- 3X%MW-4X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Outputs Starting Address	1	1	
Outputs Ending Address	32	2	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Туре	1x	%lx
Inputs	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3x	%IWx
Reference	Mapped as 32 bits output	Mapped as 32 bits output
Туре	0x	%Mx
Outputs	or	or
	Mapped as 2 registers output	Mapped as 2 words
	4x	output
		%MWx
Output Type	BIN/BCD	BIN/BCD

B869–002 Register Input

55

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B869–00 Register Input Module.		
What's in this Chapter?	This chapter contains the following topics:		
	Торіс	Page	
	B869–002 Register Input, Overview	536	
	B869–002 Register Input, Switch Settings	538	
	B869-002 Register Output, Field Connections	539	
	B869–002 Register Output, Specifications	541	
	B869-002 Parameter Configuration	542	

B869–002 Register Input, Overview

Overview The B869-002 register input module provides a 5 V TTL or CMOS-compatible interface between peripheral field devices and a PLC. The B869-002 is capable of inputting numeric 4-digit BCD data, or 16-bit binary data from field devices to the controller. The module can operate in either BCD or binary mode. The desired mode is userselectable, with the parallel 16-bit input having BCD values in the range 0000 to 9999 and the binary input in the range 0000 (HEX) to FFFF (HEX). The B869-002 is an 8 channel device that operates in a channel select mode. In the channel select mode, only one channel (16-bit register width) is transferred during each cycle. This is accomplished by employing a simple form of handshaking with the PC. A channel select word is sent by the PC to the module, requesting data from a specific channel. The module then responds by sending the requested data. together with a channel select echo. Channel select mode requires 1 output and 2 consecutive input registers. The output register (Channel Select Reg) contains the address of the selected channel, while the 2 input registers contain the channel number echo and the data, respectively.

SchematicThe following figure shows the schematic diagram for the B869–002 Register InputDiagramModule.

The B869–002 operates with a 16-bit data path. Data is routed in from a device by means of a strobe line associated with each device. The data lines are common to all devices while the strobe performs the addressing function. The channel select function permits the PC to transfer a single channel of 16 bits from a selected field device to the PC during one OURBUS cycle.

The DC (data changing) signal from the field device is used for slowly changing data such as thumb wheel switches and prevents erroneous information from being transferred to the PLC.

To avoid loading the bus when a device is not being addressed, any active device interfaced to the input module must have latched, tri-state, or open collector outputs.

B869-002 Register Input, Switch Settings

Switch Settings
 Two toggle switches are located at the top of the module and are used to determine the type of communication with external devices. Both switches are user selectable.
 1. Data Polarity Switch
 This toggle switch allows selection of true-hi or true-lo input data.
 2. Bin/BCD Switch
 This toggle switch determines whether the input data is to be interpreted by the controller as a BCD or a binary value.

Note: The switch and I/O map relationship is summarized in the following table.

Table

The following table identifies the relationship between the switch and I/O map facility.

I/O Map Selection	B869 Switch Setting	Result
Binary	BCD	BCD
Binary	Binary	Binary
BCD	BCD	Erroneous
BCD	Binary	BCD

B869–002 Register Output, Field Connections

Terminal Numbering and Input Functions User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. Terminal numbering and input functions are shown on the following illustration.

NOT USED	1		NOT USED	21	
NOT USED	2		NOT USED	22	
NOT USED	3		NOT USED	23	
DATA 1	4		DATA 15	24	
DATA 2	5		DATA 16	25	
DATA 3	6		LOGIC GND	20	
DATA 4	7		STROBE 1	27	
DATA 5	8		STROBE 2	28	
DATA 6	9		STROBE 3	29	
DATA 7	10		STROBE 4	30	
DATA 8	(1)		STROBE 5	3	
DATA 9			STROBE 6	32	
DATA 10	12 13		STROBE 7	<u>3</u>	
DATA 11	(14)		STROBE 8	34	
DATA 12	15		LOGIC GND	35	
DATA 13	16		GND	36	
DATA 14	Ū)		NOT USED	37	
DATA CHANGE (DC)	18		NOT USED	38	
NOT USED	19		NOT USED	39	
NOT USED	ø		NOT USED	40	
]			

Pull-up Resistor
ConnectionResistive pull-ups of $2.2 \text{ k}\Omega \pm 10\%$ for each strobe line must be provided. This is
required on ACTIVE devices only. Thumb wheel switches, for example, do not
require the addition of pull-up resistors.

The recommended location for the pull-up resistors is at the device end of the circuit. However, they will work at the module end as well.

The following illustration shows a typical circuit setup.

Strobe Type Strobe lines for the B869 module are true-low. The opposite is the case in other Modicon I/O modules. Therefore, when multiple thumb wheel inputs require diode isolation, the polarity of the diodes may have to be reversed.

B869–002 Register Output, Specifications

Specification Table

The following table provides the specifications for the unit.

B869-002 Specificati	ons	
Description		TTL register output
Number of Points		8 channels, 16 data lines
Operating Voltage		5 V TTL
Number of Groups		N/A
Outputs/group		N/A
Guaranteed Min. Leve	els	High State > 3.5 VDC
		Low State < 0.4 VDC while sinking 16 mA
Strobe Output Power		Two TTL loads @ 5 VDC
Strobe Width Timing		2 ms ± 10%
Data Set-up Time		Within 180 μs after the strobe has gone active (LO), data must have stabilized on the field side inputs
Minimum Data Hold T	ime	100 μ s must be provided by the user
Response Time		20 ms between a field data change and an I/O Comm (OURBUS) update
Power Required	+5 VDC I/O	400 mA max.
	+4.3 VDC I/O	600 mA max.
External Power Supply		+5 VDC may be required for pull-up Vcc
Field Device TTL output level		Low: < 0.8 VDC @ 1.6 mA
Requirements		High: > 2.4 VDC @ 40 μA
	CMOS output level	Low: < 1.6 VDC @ 0.3 μA
		High: > 3.3 VDC @ 0.3 μA
Terminal Connector		AS-8535-000

Note: All user field devices must have outputs that feature latched, tristate, open collector or wired or passive logic.

Note: The user must provide 2.2 k $\Omega \pm 10\%$ pull-up resistors for each strobe line.

B869–002 Parameter Configuration

Parameter and **Default Values**

\ A / . P

arameter	Configuration	W	/indo	SW
----------	---------------	---	-------	----

REG MUX IN	
Config	
Parameter Name	Value
r MAPPING	BIT (%I-1X%M-0X)
INPUTS STARTING ADDRESS	1
- INPUTS ENDING ADDRESS	32
► OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	16
OUTPUT TYPE	BINARY 🔻

1 : 140 XBP . 3 : B869

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I- 1X%M-0X)	WORD (%IW- 3X%MW-4X)	
Inputs Starting Address	1	1	
Inputs Ending Address	32	2	
Outputs Starting Address	1	1	
Outputs Ending Address	16	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type Inputs	Mapped as 32 bits input 1x or Mapped as 2 registers input 3x	Mapped as 32 bits input %lx or Mapped as 2 words input %IWx
Reference Type Outputs	Mapped as 16 bits output 0x or Mapped as 1 register output 4x	Mapped as 16 bits output %Mx or Mapped as 1 word output %MWx
Output Type	BIN/BCD	BIN/BCD

B881-001 Latched 24 Vdc Input

56

At a Glance Purpose This chapter describes the functional and physical characteristics of the B881-001 Latched 24 Vdc Input Module. What's in this This chapter contains the following topics: Chapter? Topic Page B881-001 Latched 24 Vdc Input, Overview 546 B881-001 Latched 24 Vdc Input, Field Connections 549 B881-001 Latched 24 Vdc Input, Specifications 550 B881-001 Parameter Configuration 551

B881-001 Latched 24 Vdc Input, Overview

The B881–001 Latched 24 Vdc Input Module senses and converts input signals from its field circuitry to a logic level used by Modicon PLC. The incoming signal causes the module to latch at the occurrence of the ON state and may be considered a latching event. The 24 Vdc, true high latched input module is capable of direct connection to any Modicon, true high dc output module (at proper voltage). The following illustration shows the B881–001 Latched 24 Vdc Input Module Simplified Block Diagram

The latching mechanism exists solely to lockout subsequent incoming signals for the time it takes to communicate to the controller that a latching event occurred, receive an acknowledgement, and reset the latch. The latched input module does not affect the users field circuit, drive the controller or communicate information to it other than the fact that a latching event took place.

Signals on the 16-channel inputs are compared to a reference voltage nominally set to 75% of the group supply voltage. An input signal of 500 s minimum pulse width and equal to or exceeding the reference voltage threshold will cause a latched ON state for any given channel. An input signal voltage less than 25% of the group supply voltage will result in a system OFF state

.When the module senses and latches on the leading edge of the true-high, incoming field signal or data bit (DB), it clocks the D-type flip-flop on the low-to-high transition, in effect, capturing the latching event.

The module's ON state is communicated to the controller through Shift Register (A) and OBS chip via a handshake mechanism. The logic is then returned to the module from the CPU as an inverted signal through shift register (B) where it resets the flip-flop (latch condition) for that channel only. The reset latch is then available for another, low-to-high, event transition. To ensure that the controller has received a latched event, the module actually operates in a user programmed, echoed- data handshake mode. The handshake mechanism requires four to six scans before a new event can be recognized. Total scan time is software-limited to 200 ms maximum and hardware limited to 250 ms maximum. Thus, you should not attempt to record events with a repetition rate greater than one per second unless willing to analyze this actual system and program.

Note: Reversal of external load polarity will not cause circuit failure as the module is fused to protect its circuitry against overload currents and accidental polarity reversal.

B881-001 Latched 24 Vdc Input, Field Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows the field connections for the unit.

B881-001 Latched 24 Vdc Input, Specifications

	24 Vdc (LATCH) input True High	
	True Hiah	
	16	
ltage	20-28 Vdc	
	1	
	16	
	≤25% of group supply voltage and input reset bit sent back to module	
	≤25% of group supply voltage	
	≥75% of group supply voltage for .5 ms/min event pulse width	
Continuous	30 Vdc	
Inrush	40 Vdc for 10 ms	
ON current	6 mA @ 24 Vdc (typical)	
h	0.5 ms	
	1/s	
+5 V	30 mA	
+4.3 V	1.1 mA	
-5 V	0 mA	
oly	24 Vdc (4 Vdc), 310 mA	
	AS-8534-000	
	1/group, .75 A @ 250 Vdc	
	Continuous nrush DN current h -5 V -4.3 V 5 V	

Module B881-001, Specification Table

B881–001 Parameter Configuration

Parameter and Default Values Parameter Configuration Window

BIDIR 1 REG	
Config	
Parameter Name	Value
MAPPING	BIT (%I-1X%M-0X)
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	16
Boot Point Poi	1
OUTPUTS ENDING ADDRESS	16
OUTPUT TYPE	BINARY 🔻
1 : 140 XBP 3 : B881	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I- 1X%M-0X)	WORD (%IW-3X%MW-4X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Outputs Starting Address	1	1	
Outputs Ending Address	16	1	
Output Type	BINARY	BCD	

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Type Inputs	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	3x	%IWx
Reference	Mapped as 16 bits output	Mapped as 16 bits output
Type Outputs	0x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

Mapping Parameter References

B881-508 125 Vdc Output

57

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B881–508 125 Vdc Output Module.	
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B881–508 125 Vdc Output, Overview	554
	B881-508 125 Vdc Output, Fault Conditions	555
	881–508 125 Vdc Output, Field Connections	556
	B881-508 125 Vdc Output, Specifications	557
	B881-508 Parameter Configuration	558

B881-508 125 Vdc Output, Overview

The B881–508 125 Vdc Output Module has eight isolated outputs. The outputs can serve 125 Vdc voltage relays, pilot lamps, motor starters, solenoids, valves, and any other load rated up to 140 Vdc (the outputs work in the range 5—140 Vdc). Also, the B881 allows current surges within certain time limits. Internal fault flags report currents greater than 30 A, and currents between 5—30 A for a period greater than 500 ms. This shut down mode can only be cleared by resetting the point. Point control within ms provides fast response in critical situations. The B881–508 conforms to ANSI/IEEEC37.90 1978 duty cycle sequences.

In addition to the normal mode of controlling the outputs, the B881–508 allows the first four points to be independently controlled by external inputs through the field side connector. These external inputs are 24 Vdc active high. When a fault occurs during control by the external inputs, that input must be cycled (turned off) to clear the fault flag.

The following illustration is the B881–508 simplified schematic diagram

B881–508 125 Vdc Output, Fault Conditions

881–508 125 Vdc Output, Field Connections

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows the B881–508 terminal numbering

Note: Reverse voltage protection This module does not provide reverse voltage protection. Check for proper voltage polarity of the output wiring.

B881-508 125 Vdc Output, Specifications

B881–508.	Specifications
	opeeniounenio

Description		125 Vdc true high output
Number of Points		8
Operating Voltage		5-140 Vdc maximum
Number of Groups		8
Outputs/group		1
Maximum Load Current	t	5.0 A continuous/channel maximum @ 25°C derated by 0.03 A/°C-4.0 A continuous per channel maximum @ 60°C 29.0 A/ module maximum
Pulsed ON Cycle		500 ms maximum for 5-30 A load
Inductance and Maximu	um Current/Channel	I ² L < 25 W*
		l ² LF < 0.5 W**
Wattage		< 24 W, 2.5 W/point maximum
Minimum Load Current		75 mA
Surge Current		30.0 A 1 cycle (500 ms)/channel maximum
Minimum Load Current		75 mA
Maximum Response Time	OFF → ON	<75 S
	$ON \rightarrow OFF$	<100 S
Maximum OFF State Le	eakage Current	<3 mA
ON State Voltage Drop	Across Module	< 0.75 Vdc @ 4 A Load Current
External Inputs	Response Time	75 S
	Working Voltage Range	19.2-28 Vdc
	Maximum Input Range	30 Vdc
	Mode of Operation	True High
Power Required	+5 V	300 mA
	+4.3 V	0 mA
	-5 V	0 mA
External Power Supply		5-140 Vdc field power supply
Terminal Connector		AS-8535000
*Typical values of relay	inductance and currents that	can be switched safely at 1 s rates using this formula.
**For repetitive pulses,	use this formula.	

Note: Proper fusing of external circuitry is required, depending on the application.

B881–508 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

BIDIR 1 REG	
Config	
Parameter Name	Value
r MAPPING	BIT (%I-1X%M-0X)
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	16
▶ OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	16
- OUTPUT TYPE	BINARY 🔻
1 : 140 XBP . 3 : B881	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I- 1X%M-0X)	WORD (%IW- 3X%MW-4X)	
Inputs Starting Address	1	1	
Inputs Ending Address	16	1	
Outputs Starting Address	1	1	
Outputs Ending Address	16	1	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 16 bits input	Mapped as 16 bits input
Type Input	1x	%lx
	or	or
	Mapped as 1 register input	Mapped as 1 word input
	Зх	%IWx
Reference	Mapped as 16 bits output	Mapped as 16 bits output
Type Outputs	0x	%Mx
	or	or
	Mapped as 1 register output	Mapped as 1 word output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B882–032 24 Vdc Diagnostic Output and B818 20-28 Vac Discrete Output

At a Glance		
Purpose	This chapter describes the functional and physical characteristics 24 Vdc Diagnostic Output Module and the B818 20-28 Vac Discre	
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B882–032 24 Vdc Diagnostic Output, Overview	560
	B882-032 24 Vdc Diagnostic Output, Fault Conditions	561
	B882-032 24 Vdc Diagnostic Output, Field Connections	563
	B818, 20-28 Vac Output, Keying and Wiring	564
	B882–032 24 Vdc Diagnostic Output, Dip Switch Settings	566
	B882–032 24 Vdc Diagnostic Output, Specifications	567
	B818, 20-28 Vac Output, Specifications	568
	B882-032 Parameter Configuration	569
	B818 Parameter Configuration	570

B882-032 24 Vdc Diagnostic Output, Overview

The B882–032 diagnostic output module provides 32 points that make up four groups of eight outputs. Each group of eight outputs shares an external power supply voltage. The outputs work over the range of 20.0–28.0 Vdc, true high. It is capable of driving 24 Vdc relays, solenoids, pilot lamps, and other loads rated up to 1.0 A.

The B882–032 module also detects field fault conditions and turns the faulted point OFF for vital applications. The B882–032 diagnostic dc output module can detect open-load, over-current, over-voltage, and over-temperature conditions. The following illustration is the B882–032 simplified block diagram

The functionality of the diagnostic dc output module can be selected according to the following criteria. It can be a bi-directional module (B882) with 32 discrete outputs and 32 discrete inputs which represent fault flags for each respective output. It can also be a uni-directional module (B818) having 32 discrete outputs without fault flags.

B882–032 24 Vdc Diagnostic Output, Fault Conditions

B882 Mode Open-load, over-current, over-voltage and over-temperature fault conditions are detected by the diagnostic output module.

When an output fault is detected In the B882 mode, the module without controller intervention disarms the faulted output and reports the condition to the controller via discrete input (1x), or input register (3x) points. The point remains disarmed until the user's logic rearms the point by turning the point back on. To turn the point back on the user's logic must turn the point first off and then on.

Note: If the controller attempts to turn a faulted point back on, there must be a 2 - 5 s delay from the time of a fault to the time of cycling the faulted point on. When this delay is not given, the module ignores the change. When the fault point is brought low, the fault indicator clears in the 2-5 s range.

Note: If field power is lost, the module may detect faults. After field power is reapplied, all faults must be cleared

Note: Clearing faults prior to restarting

When a fault is detected in either the B882 or B818 mode, the source of the fault should be cleared prior to restarting the point. Failing to clear the source of a fault may result in damage to the

- power source
- driven field-side device
- module

B818 Mode

When an output fault is detected In the B818 mode, the module without controller intervention disarms the faulted output. Faults are not reported to the controller. To turn the point back on, the user's logic must first turn the point off and then on.

Note: If the controller attempts to turn a faulted point back on, there must be a 2 - 5 s delay from the time of a fault to the time of cycling the faulted point on. When this delay is not given, the module ignores the change. When the faulted point is brought low, the fault indicator clears in the 2 - 5 s range.

Note: Loss of power.

If field power is lost in the B818 mode, the module may detect faults that are not visible to the controller.

• After field power is reapplied, the points must be turned OFF and then ON for all ON states.

Fault Definitions

Term	Definition
Open Load	When the load current is less than, or equal to 100 mA, the output is turned OFF and the fault flag is set. To prevent the fault flag from being set, a resistor should be placed between the output point and the group return. For example, @ 20 Vdc the minimum load is 200 Ω , @ 24Vdc the minimum load is 240 Ω , and @ 28 Vdc the minimum load is 280 Ω . When the output is already on and the load exceeds the open load trip level for one to one and a half ms, the output is turned OFF, and the fault flag is set.
Over Current	When the load current exceeds the over current trip level following the switching of a point from OFF to ON, the output is turned OFF, and the fault flag is set. When the output is already on and the current exceeds the over current trip level for one to one and a half ms, the output is turned OFF, and the fault flag is set.

Note: The over current trip level has a value of 3.5 A or greater. Over current greater than 12 A may cause point failure

Term	Definition
Over Voltage	If the external voltage supply exceeds the module's rating, the output point turns OFF, and a fault flag may be returned. The point requires cycling after the external supply returns to a safe operating level. The over-voltage trip level has a value greater than 31 Vdc. There is no time delay.
Over Temperature	When the junction temperature of the output transistor reaches 140°C or greater, the output is turned OFF, and the fault flag is set.

Note: the following about unused outputs in a B882

- Unused outputs should not be turned ON since their field points are not wired.
- Turning them ON will cause an open load fault and the active light will blink.
- The minimum load required is 100 mA.

B882-032 24 Vdc Diagnostic Output, Field Connections

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. Setting the DIP switch allows selection of bi-directional fault reporting or uni-directional non-fault reporting functionality prior to installation.

The following illustration shows the B882–032 terminal numbering and output connections

B818, 20-28 Vac Output, Keying and Wiring

Overview	User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.				
Terminal Numbering and Output	The following figure shows termin B818 module.	nal num	nbering a	and output connections for the the	
Connections	Grp 1 -> Output 1	1	21	Output 17 <- Grp 3	
	Output 2 —	2	22	— Output 18	
	Output 3 —	3	23	— Output 19	
	Output 4 —	4	24	— Output 20	
	+24 VDC	5	25	+24 VDC	
	GND —	6	26	— GND	
	Output 5 —	7	27	— Output 21	
	Output 6 —	8	28	— Output 22	
	Output 7 —	9	29	— Output 23	
	Output 8 —	10	30	— Output 24	
	Grp 2 -> Output 9	11	31	Output 25 <- Grp 4	
	Output 10 —	12	32	— Output 26	
	Output 11 —	13	33	— Output 27	
	Output 12 —	14	34	— Output 28	
	+24 VDC	15	35	+24 VDC	
	GND —	16	36	— GND	
	Output 13 —	17	37	— Output 29	
	Output 14 —	18	38	— Output 30	
	Output 15 —	19	39	— Output 31	
	Output 16 —	20	40	— Output 32	
	L		L	J	

MechanicalThe following figure shows the keying for the the B818 module.Keying

B882-032 24 Vdc Diagnostic Output, Dip Switch Settings

The four-position dip switch is located on the rear of the module. This switch controls the functionality of the module (bi-directional or uni-directional). Set switch SW3 for either (B882) bi-directional fault reporting, or (B818) unidirectional non-fault reporting. Refer to the following illustration for switch settings. Also refer to the label located on the left side of the module itself. The following illustration shows the B882–032 dip switch settings

4-POSITION DIP-SWITCH

NOT USED, KEEP TO LEFT 4

Note: Selecting the bi-directional module functionality (B882) allows 32 discrete outputs and 32 returned fault flags. Selecting the uni-directional module functionality (B818) allows 32 discrete outputs.

3

B882-032 24 Vdc Diagnostic Output, Specifications

Description		24 Vdc diagnostic output	
Type of Operation		True high	
Number of Points		32	
Operating Voltage		19.2-28 Vdc	
Number of Groups		4	
Outputs/group		8	
ON State Voltage Drop)	0.5 Vdc maximum @ 1 A	
OFF State Leakage		1.0 mA maximum @ 28.0 Vdc	
Minimum Load		100 mA	
Maximum Continuous Current	per output	1.0 A	
	per group	6.0 A	
	per module	24.0 A	
Surge Current	peak	7.5 A for 0.5 ms	
maximum		10 pulses/s with 1.0 A dc	
Load Inductance		1 H maximum with no external diode suppression	
Load Capacitance		1000 f maximum	
Flags B882 Only	Open Load	100 mA or less	
	Over Current	3.5 A or greater	
	Over Voltage	31 Vdc or greater	
	Over Temperature	140°C or greater	
Maximum ResponseOFF \rightarrow ON1 ms with a resistive loadTime		1 ms with a resistive load	
	$ON \rightarrow OFF$	1 ms with a resistive load	
Power Required	+5 V	300 mA*	
	+4.3 V	10 mA	
	-5 V	0 mA	
* When all outputs are	ON, +5 V = 300mA. W	/hen all outputs are OFF, +5 V = 200 mA.	
External Power Supply		With nominal voltage of 24 Vdc re-quired to power the field side of the B882**	
Terminal Connector		AS-8535-000	
requirements of this su	oply have three compo	ower to the field side loads and the field side electronics. The amperage sizing nents: 160 mA/group maximum (all channels ON), plus steady state load current ously, plus the inrush current of all outputs capable of being switched	

B882-032 specifications

of all outputs capable of being ON simultaneously, plus the inrush current of all outputs capable of being switched simultaneously.

B818, 20-28 Vac Output, Specifications

Specification Table

The following table provides the specifications for the unit.

B818 Specifications			
Description		32 point discrete output module	
Number of Points		32	
Operating Voltage		20-28 VAC cont.	
Number of Groups		4	
Outputs/group		8	
ON Current	Maximum/point	1 A	
	Maximum/group	6 A	
	Maximum/module	24 A	
Power required	+ 5 V	300 mA	
	+ 4.3 V	10 mA	
	- 5 V	0 mA	

B882–032 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Э
%I-1X%M-0X)
NRY '
~

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I- 1X%M-0X)	WORD (%IW- 3X%MW-4X)	
Inputs Starting Address	1	1	
Inputs Ending Address	32	2	
Outputs Starting Address	1	1	
Outputs Ending Address	32	2	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 32 bits input	Mapped as 32 bits input
Туре	1x	%lx
Inputs	or	or
	Mapped as 2 registers input	Mapped as 2 words input
	Зх	%IWx
Reference	Mapped as 32 bits output	Mapped as 32 bits output
Туре	0x	%Mx
Outputs	or	or
	Mapped as 2 registers output	Mapped as 2 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B818 Parameter Configuration

Parameter and Default Values Parameter Configuration Window

32-OUT	
Config	
Parameter Name	Value
r MAPPING	BIT (%M-0X)
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	32
•OUTPUT TYPE	BINARY 🔻
· · · · · · · · · · · · · · · · · · ·	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%M-0X)	WORD (%MW-4X)	
Outputs Starting Address	1	1	
Outputs Ending Address	32	2	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 32 bits output	Mapped as 32 bits output
Туре	0x	%Mx
	or	or
	Mapped as 2 registers output	Mapped as 2 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B882-116 24 Vdc Output

59

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B882–116 24 Vdc Output Module.		
What's in this Chapter?	This chapter contains the following topics:		
	Торіс	Page	
	B882–116 24 Vdc Output, Overview	572	
	B882–116 24 Vdc Output, Field Connections	573	
	B882-116 24 Vdc Output, Configuration	574	
	B882–116 24 Vdc Output, Switch Settings	577	
	B882-116 24 Vdc Output, Specifications	578	
	B882-116 Parameter Configuration	580	

B882–116 24 Vdc Output. Overview

Overview The B882-116 24 Vdc (16-point) output module monitors field points for both open and short circuit fault conditions. The module is designed for safety applications whereby it monitors essential field wiring.

Two test modes are available: pulse test mode, and no pulse test mode. In no pulse test mode, the module detects open circuits only when the output point is OFF, and short circuits only when the point is ON. Leakage current in the OFF state is less than 3 mA. Trip current to detect a short circuit is greater than 1 A. In pulse test mode, the module pulses the output to the opposite of the command state to determine the complete status of the output load. Pulse timing is: 500 s opposite state pulse once every second.

Note: Average currents in output circuits are changed by no more than 0.1% by full test mode

Schematic

The following illustration is the B882–116 simplified schematic diagram

diagram

This leakage current is actually the 2.5 mA test current source. It cannot be turned OFF.

B882–116 24 Vdc Output, Field Connections

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. The following illustration shows the B882–116 terminal numbering and output connections

Note: The dummy load pin is only used to prevent an open circuit fault from being returned from an unused output.

B882–116 24 Vdc Output, Configuration

This module appears as a B882 module when configured—i.e., the module requires either four 16-bit words—two 3x input registers and two 4x holding registers or 32 discrete 0x outputs and 32 discrete 1xinputs.

The first holding register contains the command state programmed by the user. The input registers contains the faults detected. If an open circuit fault is detected on output point three, then a one is displayed in the 3x register at position three. If a short fault is detected on output point three, then a one is displayed in register 3x + 1 at position three. A one indicates a detected fault, whereas a zero indicates normal operation of that output point.

The module uses only three of the four configured 16-bit words. A point that is shorted disables the output current flow. Once a fault is detected the operation follows the following flow chart if the module is in the pulse test mode of operation. If not in pulse test mode, then reported faults are cleared when a command changes it to the opposite state. In either case the detection of a short will force the point off.

Note: The module will not work correctly with a J810 remote I/O processor.

The B882–116 full fault test mode only flow chart is shown in the illustration below.

OPEN CIRCUIT

SHORT CIRCUIT

Module Mode Behavior	Partial Test Mode	Full (PULSE) Test Mode
Use with high speed field devices	Yes	Not recommended
Finds opens when OFF	Yes	Yes
Finds opens when ON	No	Yes
Reaction to OPEN fault*	No Change	Point OFF
To clear open fault, close physical fault, then	See Note 1	Write 0
Finds shorts when OFF	No	Yes
Finds shorts when ON	Yes	Yes
Reaction to short fault*	Point OFF	Point OFF
To clear short fault, clear physical fault, then	See Note 2	Write 0

The B882–116 module mode behavior table is shown below.

*In all cases faults are reported to the PLC via register entries for corresponding point and type of fault(s). In addition, the fault lamp for the corresponding group will blink until fault indication is cleared. Any points with detected short faults will be turned off independent of the command state from the PLC.

Note 1: In partial test mode an open fault indication will be cleared by writing a 1 to the output point independent of the actual status of the output wiring.

Note 2: In partial test mode a short fault indication will be cleared by writing a 0 to the output point independent of the actual status of the output wiring.

B882–116 24 Vdc Output, Switch Settings

A two-position dip switch located on the rear of the module is used to select one of two test modes on a group basis. No pulse test mode detects open circuits only when the output is OFF, and shorts circuits only when the point is ON. Pulse test mode pulses the output to the opposite of the command state to determine the status of the output load. Each individual switch relate s to each group of eight output points. For example, DIP switch position #1 when set to ON enables pulse test fault sensing for group 1(points 1-8). When a fault is detected the corresponding FAULT LED flashes independent of the test mode. When the switch is in the OFF position, no pulse test is performed.

The pulse dip-switch settings for the B882–116 module is shown below.

Note: When using binary and BCD format, remember that output 16 is the LSB of word one and word two is ignored by the module.

B882–116 24 Vdc Output, Specifications

B882–116 Specification Table

Description	24 Vdc output	
Number of Points	16	
Number of Groups	2	
Outputs per Group	8	
Working Voltage	19.2-30.0 Vdc	

Note: The 24 V field supply must be rated to supply output load current +.5 A for the module, +5 A surge rating. This 5 A surge rating is required to correctly detect short circuits. Group input power fusing is recommended. The fuse should be rated for expected load current plus 5 A slo-blow.

Note: Low-voltage

When field supply drops from 24 to 0 V, an output current of up to 15 mA may be generated to points that are OFF. When field supply is below 19.2 V, reported output fault flags may be incorrect.

Module B882-116 Specification Table, Continued

ON State Voltage Drop	0.5 Vdc maximum @ 0.5 A
OFF State Leakage Current	3.0 mA maximum at 30.0 Vdc
	Maximum allowable load resistance 6 k Ω

Note: 3 mA x 6 k Ω = 18 V—i.e. leakage current produces enough voltage on a 6 k Ω load resistor to simulate a valid input signal.

Inrush Current		1.0 A peak for 0.1 ms at 4 pulses/s while carrying 0.5 A dc
Continuous Current Maximum		0.5 A
	Maximum/group	4.0 A
	Maximum/ module	8.0 A
Maximum Load Current		10 mA
Maximum Load Inductance		0.5 H @ 0.5 A, 4 Hz switching
Maximum Load Capacitance		4 F @ 4 Hz maximum switching frequency
Power Required	+5 V	350 mA maximum all outputs ON
	+4.3 V	10 mA
	-5 V	0 mA (not used)
Terminal Connector		AS-8535-000

Module B882-116 Specification Table, Co

B882–116 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

Config	
Parameter Name	Value
· - · MAPPING	BIT (%I-1X%M-0X)
INPUTS STARTING ADDRESS	1
	32
└ · · · OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	32
····OUTPUT TYPE	BINARY

1 : 140 XBP 1 3 : B882

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I- 1X%M-0X)	WORD (%IW- 3X%MW-4X)	
Inputs Starting Address	1	1	
Inputs Ending Address	32	2	
Outputs Starting Address	1	1	
Outputs Ending Address	32	2	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 32 bits input	Mapped as 32 bits input
Туре	1x	%lx
Inputs	or	or
	Mapped as 2 registers input	Mapped as 2 words input
	3x	%IWx
Reference	Mapped as 32 bits output	Mapped as 32 bits output
Туре	0x	%Mx
Outputs	or	or
	Mapped as 2 registers output	Mapped as 2 words output
	3х	%MWx
Output	BIN/BCD	BIN/BCD
Туре		

800 Series Special Purpose Modules

V

Introduction

At a Glance	This part provides an overview of the 800 Series special purpose modules. The content describes the modules' features.			
What's in this Part?	This part contains the following chapters:			
	Chapter	Chapter Name	Page	
	60	B882–239 High Speed Counter	585	
	61	B883–001 High Speed Counter	593	
	62	B883–101 and B883–111 CAM	599	
	63	B883–200 Thermocouple Input Module	605	
	64	B883–201 RTD Input	613	
	65	B884–002 PID	621	
	66	B885–002 ASCII / BASIC	629	

B882–239 High Speed Counter

60

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B882-2 High Speed Counter module.	
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B882–239 High Speed Counter, Overview	586
	B882-239 High Speed Counter, Keying and Wiring	587
	B882–239 High Speed Counter, Specifications	589
	B882-239 Parameter Configuration	591

B882–239 High Speed Counter, Overview

Overview	The B882-239 High Speed Counter module consists of two identical and independent counters that can be used in a variety of counting and comparison operations. Each counter is capable of counting up to 30,000 pulses per second. The B882 has a maximum count rate of either 30 kHz or 350 Hz and interfaces directly with OURBUS. The counting function is done by internal logic within the module itself and independent of controller scanning. There are four field inputs, three field outputs, two user-selectable DIP switch inputs, a preset input from the programmable controller, and finally, an actual count output to the controller.
Features	 2 independent counters 0 to 30 kHz operation with a selectable low frequency filter Each counter counts to 9999 The two counters can be cascaded to count to 99,999,999 Readily configurable to other applications Four field inputs (0 to 32 VDC, true low) and three field outputs (0 to 32 VDC, true low) per counter Counts high speed field pulses independent of the controller scan Each counter automatically reports its current count to the PLC every scan 800 Series diagnostic features such as personality code, health bit, field side status indicators, and communications ACTIVE indicator

• Standard 800 Series industrial-grade design

B882–239 High Speed Counter, Keying and Wiring

Overview

Terminal Numbering and Output Connections User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. Make field connections to the B882-239 via a high density 24 position plug with screw terminals. The screw terminals accept either solid or standard wire of 14 AWG or less and have a UL rating of 300VAC. Pin numbers are indicated with a label on both the plug and housing. The filed connector is polarized so that it cannot be seated upside down.

Mechanical Keying Keying or housing slot key pin installation for the B882-239 module

B882–239 High Speed Counter, Specifications

Characteristic	Description		
Number of counters	2		
Number of auxiliary inputs	6		
Number of outputs	6		
Operating Voltage	5-24 Vdc		
Overvoltage	32 V		
Power required	+5 V	188 mA	
	-5 V	0 mA	
	-4.3 V	0 mA	
Voltage range	5 Vdc	2.4 to 5.5 Vdc	
	12 Vdc	6 to 16 Vdc	
	24 Vdc	12 to 32 Vdc	
Logical "1"	1.1 V (min) neg thresh 2.2 V (typ) neg thresh	True for both inputs and outputs	
Logical "0"	3.5 V (max) pos thresh 2.7 V (typ) pos thresh		
Hysteresis	0.36 V (min) 0.49 V (typ)		
Maximum count frequency	high	30 kHz	
	low	350 Hz	
Input voltage range	0 V to field supply input voltage (32 V max)		
Topology	2 counters per module		
	Counter 1	Unidirectional up	
	Counter 2	Unidirectional up	
Visual indicators (LEDs)	,	L	
	1 FIELD POWER	On when field power is present	

Specification Table contains circuit, electrical, and system characteristics of the B882-239. **Table**

Characteristic	Description		
	1 ACTIVE	On when communicating with controller	
	Counter 1	·	
	1 COUNT		
	3 input	ENABLE, RESET 1, RESET 2	
	2 output	COIL 1, COIL 2	
	1 OVF		
	Counter 2		
	1 COUNT		
	3 input	ENABLE, RESET 1, RESET 2	
	2 output	COIL 1, COIL 2	
	1 OVF		

B882–239 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

BIDIR 2 REG	
Config	
Parameter Name	Value
r MAPPING	BIT (%I-1X%M-0X)
INPUT STARTING ADDRESS	129
INPUT ENDING ADDRESS	160
OUTPUT STARTING ADDRESS	129
OUTPUT ENDING ADDRESS	160
OUTPUT TYPE	BINARY
· · · · · · · · · · · · · · · · · · ·	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	BIT (%I- 1X%M-0X)	WORD (%IW- 3X%MW-4X)	
Inputs Starting Address	129	1	
Inputs Ending Address	160	2	
Outputs Starting Address	129	1	
Outputs Ending Address	160	2	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 32 bits input	Mapped as 32 bits input
Туре	1x	%lx
Inputs	or	or
	Mapped as 2 registers input	Mapped as 2 words input
	Зх	%IWx
Reference	Mapped as 32 bits output	Mapped as 32 bits output
Туре	0x	%Mx
Outputs	or	or
	Mapped as 2 registers output	Mapped as 2 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B883–001 High Speed Counter

61

At a Glance

Purpose	This chapter describes the functional and physical characterist High Speed Counter Module.	tics of the B883-001
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B883–001 High Speed Counter, Overview	594
	B883-001 High Speed Counter, Keying and Wiring	595
	B883–001 High Speed Counter, Specifications	597
	B883-001 Parameter Configuration	598

B883-001 High Speed Counter, Overview

Overview The B883-001 High Speed Counter Module consists of two separate and independent counters and associated logic, and controls up to three outputs. After being configured, the module can operate independently of the PC and react to external events faster than the PC scan time. The module counters have the following characteristic: Counter #1 has bi-directional (up/down) count capability and has two inputs, two set points, a programmable maximum count, and two outputs. Counter 1 will also accept input from a quadrature type device such as an encoder. Counter #2 is an up counter and has one input, a programmable maximum count. and one output. Both counters accept pulsed inputs of 0 to 5, 0 to 12, or 0 to 24 VDC at frequencies up to 50 KHz, the B883 options are selected by commands from the PC and by terminal wiring. Counter #1 has three modes of operation. Counter #2 can accept input either from an external source or from one of two internal clocks. Both counters can be configured to operate in a wide variety of applications (refer to the section on programming the B883)

B883–001 High Speed Counter, Keying and Wiring

Overview	User connections are made to a standard screw to system permits module insertion or removal witho		
Terminal Numbering and Output	The following diagram shows terminal numbering a B883-001 module.	and out	out connections for the the
Connections	Counter 2 Output —	10	
	Return —	9	
	Counter 2 Enable —	8	
	Counter 2 Reset —	7	
	Counter 2 Input —	6	
	Counter 2 Frequency —	5	
	Return —	4	
	Counter 1 Output 2 —	3	
	Counter 1 Output 1 —	2	
	Return —	1	
	Counter 1 Enable —	10	
	Counter 1 Marker —	9	
	Counter 1 Preset —	8	
	Input Select —	7	
	Counter 1 Input B —	6	
	Counter 1 Input A —	5	
	Counter 1 Frequency —	4	
	Return —	3	
	Voltage Reference —	2	
	Return —	1	
	l		

 Mechanical
 The following figure shows the keying for the the B883-001 module.

 Keying

B883–001 High Speed Counter, Specifications

Specification Table The following table provides the specifications for the unit.

B883-001 Specification	S		
Number of Counters		2	
Number of Auxiliary Input	ts	6	
Number of Outputs		3	
Operating voltage		5-24 Vdc	
Overvoltage		Up to 30 Vdc	
Power Required	+5 V	677 mA	
	+4.3 V	0 mA	
	-5 V	0 mA	
Voltage Range	5 Vdc	2.4 to 5.5 Vdc	
	12 Vdc	6 to 16 Vdc	
	24 Vdc	12 to 32 Vdc	
Transition	0 to 1	1 to 0	
5 Vdc	2.4 Vdc	1.6 Vdc	
12 Vdc	5.6 Vdc	4.0 Vdc	
24 Vdc	11.2 Vdc	8.0 Vdc	
Max Count Frequency		50 kHz	
Ramp Time		7 V per sec	
Topology: 2 counters/	Counter 1	bidirectional up/down	
module	Counter 2	unidirectional up	
Visual indicators	1 LED/output	"on" when output is on	
	1 "field power" indicator	"on" when field power is present	
	1 "active" indicator	"on" when good communication with PC	
	1 "PWR" indicator	"on" when backplane power applied	

B883–001 Parameter Configuration

Parameter Name Parameter Name r MAPPING L INPUTS STARTING A I INPUTS ENDING AD	Value WORD (%IW-3X%MW▼X)
r MAPPING L INPUTS STARTING A	WORD (%IW-3X%MW
INPUTS STARTING A	
	555500 1
INPUTS ENDING AD	DDRESS 1
	DRESS 3
L INPUT TYPE	BINARY 🔻
	ADDRESS 1
	ADDRESS 3
OUTPUT TYPE	BINARY

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW- 3X%MW-4X)	BIT (%I-1X%M-0X)	
Inputs Starting Address	1	1	
Inputs Ending Address	3	48	
Input Type	BINARY	-	
Outputs Starting Address	1	1	
Outputs Ending Address	3	48	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 48 bits input	Mapped as 48 bits input
Туре	1x	%Ix
Inputs	or	or
	Mapped as 3 registers input	Mapped as 3 words input
	Зx	%IWx
Reference	Mapped as 48 bits output	Mapped as 48 bits output
Туре	0x	%Mx
Outputs	or	or
-	Mapped as 3 registers output	Mapped as 3 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B883-101 and B883-111 CAM

62

At a Glance Purpose This chapter describes the functional and physical characteristics of the B883-101& B883-111CAM Modules. What's in this This chapter contains the following topics: Chapter? Topic Page B883-101 & B883-111 CAM, Overview 600 B883-101 and B883-111 CAM, Keying and Wiring 601 B883-101 and B883-111 CAM, Specifications 602 B883-101 and B883-111 Parameter Configuration 603

B883-101 & B883-111 CAM, Overview

Overview The B883-111 CAM module with velocity compensation and the B883-101 CAM module are 800 series input/output (I/O) modules with added microprocessor control capabilities. These modules are used to automate the operation of metal shaping power presses for any mass production industry such as motor vehicle manufacture and assembly. Both models of the CAM module are physically indistinguishable and will be discussed as a single unit.

The CAM module receives a twelve-bit (plus control) parallel position code from an encoder. The module then transmits an eight-bit parallel control code to its discrete outputs based upon the received position data.

Operating instructions in command form are loaded into the module from a programmable controller by way of the I/O system. After the commands are loaded, position codes received by the module are processed and outputted by the CAM module at a 4.000 Hertz rate. This speed is in excess of the PC's scan rate. A total of 16 output intervals may be defined and distributed at random among eight outputs.

CAM module inputs will be accepted in binary, binary coded decimal (BCD) or Gray code.

If your application requires velocity compensation, choose the B883-111 module. The B883-111 module compensates for changes in velocity.

B883-101 and B883-111 CAM, Keying and Wiring

Overview	User connections are made to a s system permits module insertion			
Terminal Numbering and Output	The following diagram shows term B883-101and B883-111 modules		mbering	and output connections for the the
Connections	Power Common —	1	11	— Field Power
	O/P 1	2	12	— NC
	0/P 2	3	13	— NC
	О/Р 3 —	4	14	— NC
	0/P 4	5	15	— NC
	NC —	6	16	— O/P 5
	NC —	7	17	— O/P 6
	NC —	8	18	— O/P 7
	NC —	9	19	— O/P 8
	Field Power —	10	20	— Power Common

Mechanical Keying The following figure shows the keying for the the B883-101 and B883-111 modules.

B883-101 and B883-111 CAM, Specifications

Table	B883-101 & B883-111 Specifications				
	Number of Inputs		12		
	Number of Outputs		8		
	Supply Voltage		Max. 7 Vdc		
	Operating Voltage		20.4 - 28.8 Vdc 25 mA - 1.9 A		
	Maximum velocity		4000 counts/sec		
	Topology		8 positive true saturated switches per module (12 Bit TTL/CMOS input)		
	Power required	+ 5 V	1000 mA		
		+ 4.3 V	0 mA		
		- 5V	0 mA		
	Visual indicators	1 active indicator	"on" when good communication with PC		
		1 run indicator	"on" when in run mode		

B883–101 and B883–111 Parameter Configuration

Parameter and Default Values Parameter Configuration Window

BIDIR 3 REG	
Config	
Parameter Name	Value
r MAPPING	WORD (%IW-3X%MW
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	3
L INPUT TYPE	BINARY
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	3
OUTPUT TYPE	BINARY

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW- 3X%MW-4X)	BIT (%I-1X%M-0X)	
Inputs Starting Address	1	1	
Inputs Ending Address	3	48	
Input Type	BINARY	-	
Outputs Starting Address	1	1	
Outputs Ending Address	3	48	
Output Type	BINARY	BCD	

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 48 bits input	Mapped as 48 bits input
Туре	1x	%lx
Inputs	or	or
	Mapped as 3 registers input	Mapped as 3 words input
	3x	%IWx
Reference	Mapped as 48 bits output	Mapped as 48 bits output
Туре	0x	%Mx
Outputs	or	or
	Mapped as 3 registers output	Mapped as 3 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

Mapping Parameter References

B883–200 Thermocouple Input Module

63

At a Glance		
Purpose	This chapter describes the functional and physical characterist Thermocouple Input Module.	ics of the B883-200
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B883–200 Thermocouple Input, Overview	606
	B883–200 Thermocouple Input, Keying and Wiring	607
	B883–200 Thermocouple Input, Specifications	609
	B883–200 Parameter Configuration	610

B883–200 Thermocouple Input, Overview

OverviewThe Modicon B883-200 Thermocouple Input Module is a smart I/O module that
multiplexes up to ten thermocouples into three consecutive input registers of the
control system.
Each B883-200 module provides reference junction temperature compensation,
open circuit detection, and linearization for ten thermocouples. Also built-in are self-
calibration, internal diagnostics, and 800-series bus diagnostics.
Any mix of type B, E, J, K, R, S, T or N thermocouple operations or simple -20 to +80
mV input operations may be set by the user under program control.
For the thermocouple inputs, the PLC can access individual temperature readings
in degrees Centigrade, Fahrenheit or in compensated millivolts. Each time the PLC
scans theB883-200 module, it receives the specified temperature or millivolt reading
along with open-circuit and module health data. The thermocouple wire is
terminated on a special isothermal connector assembly on the housing. Each B883-
200 module uses three consecutive input registers and three output registers.

B883–200 Thermocouple Input, Keying and Wiring

Overview User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring. Terminal The following diagram shows terminal numbering and output connections for the the Numbering and B883-200 module. Output NC -1 2 – NC Connections THERM 1+ ----3 4 - THERM 1-1 — 5 6 - THERM 2+ THERM 2- -7 8 - 2 THEBM 3+ -----9 10 - THERM 3-3 — 11 12 - THERM 4+ THERM 4- ----4 13 14 NC — - THERM 5+ 15 16 THEBM 5- ----____5 17 18 GND — – NC 19 20 CJC 2+ ----21 22 — CJC 2-THERM 6+ -----— THERM 6-23 24 6 — — THERM 7+ 25 26 — 7 THERM 7- ----27 28 THERM 8+ ----29 30 — THERM 8-8 — 31 32 — THERM 9+ THERM 9- ----33 34 — 9 NC — 35 36 — THERM 10+ THERM 10- ----— 10 37 38 NC ----39 40 — NC

MechanicalThe following figure shows the keying for the the B883-200 module.Keying

B883–200 Thermocouple Input, Specifications

Specification Table The following table provides the specifications for the unit.

B883-200 Specifica	ations		
Description		Thermocouple input Type B,E,J,K,R,S,T,N or linear mV	
Inputs per Modules		10	
Max. Common Mode Voltage		200 Vdc/Vac (peak)	
Resolution Under Program Control		1°C, 1°F, 10 mV 0.1°C, 0.1°F, 1 mV	
Update Time		100 ms per selected channel 1 sec. max. all channels	
Power-up Time		13 sec. max.	
Warm-up Time		2 Min. max.	
Interface to PC		3 output registers (4xxxx) 3 input registers (3xxxx) Junction CJC=cold	
Power required	+ 5 V	400 mA	
	+ 4.3 V	5 mA	
	- 5 V	0 mA	
Visual indicators compensation	1 "active" indicator "on" when good comunication wirth PC		

B883–200 Parameter Configuration

Parameter and **Default Values**

Parameter Configuration Window

BIDIR 3 REG	
Config	
Parameter Name	Value
MAPPING	WORD (%IW-3X%MW▼X
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS	3
L INPUT TYPE	BINARY 🔻
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	3
OUTPUT TYPE	BINARY 🔻
···· ·· ·· ·· · · · · · · · · · · · ·	

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW- 3X%MW-4X)	BIT (%I-1X%M-0X)	
Inputs Starting Address	1	1	
Inputs Ending Address	3	48	
Input Type	BINARY	-	
Outputs Starting Address	1	1	
Outputs Ending Address	3	48	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 48 bits input	Mapped as 48 bits input
Inputs	1x	%lx
	or	or
	Mapped as 3 registers input	Mapped as 3 words input
	3x	%IWx
Reference Type	Mapped as 48 bits output	Mapped as 48 bits output
Outputs	0x	%Mx
	or	or
	Mapped as 3 registers output	Mapped as 3 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B883–201 RTD Input

At a Glance		
Purpose	This chapter describes the functional and physical charac RTD Input Module.	teristics of the B883-201
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	B883–201 RTD Input, Overview	614
	B883–201 RTD Input, Keying and Wiring	615
	B883-201 RTD Input, Specifications	617
	B883–201 Parameter Configuration	618

B883–201 RTD Input, Overview

OverviewThe B883-201 Resistance Temperature Detector (RTD) module is a smart I/O
module that multiplexes up to eight two- or three-wire RTDs into three consecutive
input registers of a control system.
Each B883-201 module provides linearization for any mix of 8 RTDs. Also built-in
are self-calibration, internal diagnostics, and 800-Series bus diagnostics.
American standard platinum, European standard platinum per DIN, or linear
resistance input can be selected by the user under program control.
When an RTD is selected, the PLC can access each individual temperature reading
in Centigrade, Fahrenheit or in compensated millivolts. Each time the PLC scans the
B883-201 module, it receives the specified temperature or millivolt reading along
with open-circuit and module health data.
Each B883-201 uses three consecutive input registers and three output registers.
These registers are assigned to the same slot within the channel.

B883–201 RTD Input, Keying and Wiring

Overview

User connections are made to a standard screw terminal strip. The rigid wiring system permits module insertion or removal without disturbing the wiring.

Terminal Numbering and Output Connections The following diagram shows terminal numbering and output connections for the the B883-201 module.

ie.					
	NC —	1		2	— NC
	NC —	3		4	— NC
	NC —	5		6	— NC
	NC —	7		8	— Ex 1 Hi
	Sense 1 Hi —	9		10	— Ex 1 Lo
	Shield 1 —	11		12	— Ex 2 Hi
	Sense 2 Hi —	13		14	— Ex 2 Lo
	Shield 2 —	15		16	— Ex 3 Hi
	Sense 3 Hi —	17		18	— Ex 3 Lo
	Shield 3 —	19		20	— Ex 4 Hi
	Sense 4 Hi —	21		22	— Ex 4 Lo
	Shield 4 —	23		24	— Ex 5 Hi
	Sense 5 Hi —	25		26	— Ex 5 Lo
	Shield 5 —	27		28	— Ex 6 Hi
	Sense 6 Hi —	29		30	— Ex 6 Lo
	Shield 6 —	31		32	— Ex 7 Hi
	Sense 7 Hi —	33		34	— Ex 7 Lo
	Shield 7 —	35		36	— Ex 8 Hi
	Sense 8 Hi —	37		38	— Ex 8 Lo
	Shield 8 —	39		40	— GND
			l]

Mechanical
KeyingThe following figure shows the keying for the the B883-201 module.

B883–201 RTD Input, Specifications

Specification Table The following table provides the specifications for the unit.

B883-201Specificatio	ons		
Description		RTD input American or European 100 ΩPlatinum	
Inputs per Module		8	
Max. Common Mode Voltage		7 Vdc/Vac (peak)	
Resolution Under Program C	ontrol	1°C, 1°F, 10Ω 0.1°C, 0.1°F, 1Ω	
Update Time		125 ms per selected channel 1 sec. max. all channels	
Power-up Time		13 sec. max.	
Warm-up Time		2 min. max.	
Interface to PC		3 output registers (4xxxx) 3 input registers (3xxxx)	
Power required	+ 5 V	640 mA	
	+ 4.3 V	5 mA	
	- 5 V	0 mA	
Visual indicators	1 active indicator	"on" when good comunication with PC For 2 wire RTD short and excitation	

B883–201 Parameter Configuration

Parameter and F Default Values

Parameter Configuration Window

Config	
Parameter Name	Value
r MAPPING	WORD (%IW-3X%MW 🔻
INPUTS STARTING ADDRESS	1
INPUTS ENDING ADDRESS 3	
L INPUT TYPE	BINARY
OUTPUTS STARTING ADDRESS	1
OUTPUTS ENDING ADDRESS	3
OUTPUT TYPE	BINARY 🔻
	•

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW- 3X%MW-4X)	BIT (%I-1X%M-0X)	
Inputs Starting Address	1	1	
Inputs Ending Address	3	48	
Input Type	BINARY	-	
Outputs Starting Address	1	1	
Outputs Ending Address	3	48	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference	Mapped as 48 bits input	Mapped as 48 bits input
Туре	1x	%lx
Inputs	or	or
	Mapped as 3 registers input	Mapped as 3 words input
	Зх	%IWx
Reference	Mapped as 48 bits output	Mapped as 48 bits output
Туре	0x	%Mx
Outputs	or	or
	Mapped as 3 registers output	Mapped as 3 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B884-002 PID

65

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B884-002 PID Module.		
What's in this	This chapter contains the following topics:		
Chapter?	Торіс	Page	
	B884–002 PID, Overview	622	
	B884-002 PID Control, Keying and Wiring	623	
	B884-002 PID Control, Specifications	625	
	B884–002 Parameter Configuration	626	

B884-002 PID, Overview

Overview The B884-002 PID Module provides two completely independent and separate Proportional Integral Derivative (PID) loops. You can configure the PID loops for control strategies including open loop, closed loop, PID, PID on error squared and cascade control. You configure the PID module using a configuration program (Part #SW-BDD-3DA) on an IBM or compatible personal computer. You can download the data either through the PLC or directly to the modules, where it is stored in a non-volatile **EEPROM** memory. To ensure the highest accuracy and reliability, the module has fully floating, isolated and protected inputs and outputs. The module has seven independently configured analog inputs (4 voltage/current, 2 thermocouple, 1 frequency), two analog outputs. two discrete inputs and two discrete outputs. Each loop is assigned two voltage and one thermocouple inputs. There is no need for any analog adjustments such as trimpots for zero, offset, or span, which results in superior accuracy, stability and reliability.

B884–002 PID Control, Keying and Wiring

Overview	User connections are made to a system permits module insertion			
Terminal Numbering and	The following diagram shows tern B884-002 module.	ninal nu	ımbering	g and output connections for the the
Output Connections	RS422 TXD	1	2	— RS422 TXD+
	RS422 RXD	3	4	— RS422 RXD+
	RS232 Rx —	5	6	— RS232 Tx
	RS232 RTS —	7	8	— RS232 CTS
	RS422 En L	9	10	— Signal GND
	A Out 1+	11	12	— A Out 1Com
	A Out 2+	13	14	— A Out 2 Com
	NC —	15	16	— Disc In 1
	Disc In 2 —	17	18	— Disc Out 1
	Disc Out 2 —	19	20	— 24 VDC Com
	24 VDC +	21	22	— 24 VDC Com
	Power In +	23	24	— Power In Com
	TC Bypass —	25	26	— NC (CJC)
	NC (CJC) —	27	28	— THERM 1+
	THERM 1	29	30	— THERM 2+
	THERM 2	31	32	— A V/I 1+
	A V/I 1	33	34	— A V/I 2+
	A V/I 2	35	36	— A V/I 3+
	A V/I 3	37	38	— A V/I 4+
	A V/I 4	39	40	— NC
	L		L	

MechanicalThe following figure shows the keying for the the B884-002 module.Keying

B884–002 PID Control, Specifications

Specification Table The following table provides the specifications for the unit.

B884-002 Specificatio	ons		
Description		PID Control Module	
External power supply requirements		24 VDC +/- 20% at 0.3 A	
Algorithms		P, PI, PD, PID	
Topology		4 analog inputs 2 thermocouple inputs 1 pulse input 2 discrete inputs 2 analog outputs 2 discrete outputs	
Interface to PC		4 output registers (4xxxx) 4 input registers (3xxxx) A=analog)	
Power required	+ 5 V	25 - 50 mA	
	+ 4.3 V	2 mA	
	- 5 V	0 mA	
Visual indicators	1 "active" indicator	"on" when good communication with PC	

B884–002 Parameter Configuration

Default Values	BIDIR 4 REG			
	Parameter Name	Value		
		WORD (%IW-3X%MW▼X)		
		1		
	INPUTS ENDING ADDRESS	4		
		BINARY		
	OUTPUTS STARTING ADDRESS	1		
	OUTPUTS ENDING ADDRESS	4		
	OUTPUT TYPE	BINARY 🔻		

Module Configuration

Parameter Name	Value (Default)	Value (Options Available)	Description
Mapping	WORD (%IW- 3X%MW-4X)	BIT (%I-1X%M-0X)	
Inputs Starting Address	1	1	
Inputs Ending Address	4	64	
Input Type	BINARY	-	
Outputs Starting Address	1	1	
Outputs Ending Address	4	64	
Output Type	BINARY	BCD	

Mapping Parameter References

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 64 bits input	Mapped as 64 bits input
Inputs	1x	%lx
	or	or
	Mapped as 4 registers input	Mapped as 4 words input
	Зх	%IWx
Reference Type	Mapped as 64 bits output	Mapped as 64 bits output
Outputs	0x	%Mx
	or	or
	Mapped as 4 registers output	Mapped as 4 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

B885-002 ASCII / BASIC

66

At a Glance

Purpose	This chapter describes the functional and physical characteristics of the B885-002 ASCII / BASIC Module.		
What's in this Chapter?	This chapter contains the following topics:		
	Торіс	Page	
	B885–002 ASCII / BASIC, Overview	630	
	B885-002 ASCII / BASIC, Keying and Wiring	631	
	B885–002 ASCII / BASIC, Specifications	632	
	B885-002 Parameter Configuration	633	

B885-002 ASCII / BASIC, Overview

Overview The B885-002 ASCII / BASIC Module runs user-written BASIC programs independently of the controller's memory logic and scan. It also performs READ and WRITE commands to and from serial devices connected to either of the module's two RS 232/422 ports (jumper selectable). In addition, its real-time clock/calendar allows the module to run a BASIC program or flag and return a value to the PLC at a user specified date and time. The module provides report generation, interactive operator interface, high level

The module provides report generation, interactive operator interface, high level math, peripheral communication and data storage.

Using a dumb terminal or an IBM personal computer with Emulator Software (Part # SW-E885-1DA), you program the module's 53K of user memory. If you need more memory, you may provide an additional 32K of user EPROM. You can designate part of the memory as retentive variable memory to store formulas or other process parameters.

B885–002 ASCII / BASIC, Keying and Wiring

Overview			re made to a standard screw terminal strip. The rigid wiring dule insertion or removal without disturbing the wiring.
Terminal Numbering and		owing diagra 02 module.	am shows terminal numbering and output connections for the the
Output Connections	1	— N/A	Protective GND
Connections	2	— оит	RS232 Send
	3	— IN	RS232 Receive
	4	— оит	RS232 RTS
	5	— IN	RS232 CTS
	6	— IN	RS232 DSR
	7	— N/A	RS232 & RS422
	8	— CD*	Common
	12	— OUT	RS422 RTS high
	13	— OUT	RS422 RTS low
	14	— OUT	RS422 SD high
	15	— OUT	RS422 SD low
	16	— IN	RS422 CTS low
	17	— IN	RS422 CTS high
	18	— OUT	+5 V
	19	— IN	Select Input RS 422
	20	— OUT	RS232 DTR
	21	— IN	RS422 RD high
	25	— IN	RS422 RD low
Mechanical Keying	The follo	owing figure	e shows the keying for the the B885-002 module.
		-	

B885–002 ASCII / BASIC, Specifications

Specification Table

The following table provides the specifications for the unit.

B885-002 Specifications			
Description		ASCII/Basic 64 k RAM, 2 RS232/422 Ports	
Interface to PC		6 input registers (3xxxx) 6 output registers (4xxxx)	
Carrier detect (CD)		For RS232 leave pins 18 and 19 unconnected For RS422 connect pins 18 and 19	
Power Required	RS 422 mode	RS 232 mode	
+ 5 Vdc	500 mA	400 mA	
+ 4.3 Vdc	1760 mA	1000 mA	
- 5 Vdc	0 mA	0 mA	
Visual indicators	1 "active" indicator	"on" when good communication with PC	
	2 "port" indicators	"on" when active communications	
	1 "battery ok" indicator	"on" when battery is ok	
	1 "run" indicator		
	1 "power ok" indicator		

B885–002 Parameter Configuration

Parameter and Default Values

Parameter Configuration Window

BIDIR 6 REG		
Config		
Parameter Name	Value	
r MAPPING	WORD (%IW-3X%M	W
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	6	
└ INPUT TYPE	BINARY	
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	6	
OUTPUT TYPE	BINARY	-

Module Configuration

....

1 ...

Parameter Name	Value (Default)	Value (Options Available)
Mapping	WORD (%IW-3X%MW-4X)	BIT (%I-1X%M-0X)
Inputs Starting Address	1	1
Inputs Ending Address	6	96
Input Type	BINARY	-
Outputs Starting Address	1	1
Outputs Ending Address	6	96
Output Type	BINARY	BCD

	Modsoft, Concept, ProWORX	Unity
Reference Type	Mapped as 96 bits input	Mapped as 96 bits input
Inputs	1x	%lx
	or	or
	Mapped as 6 registers input	Mapped as 6 words input
	3x	%IWx
Reference Type	Mapped as 96 bits output	Mapped as 96 bits output
Outputs	0x	%Mx
	or	or
	Mapped as 6 registers output	Mapped as 6 words output
	4x	%MWx
Output Type	BIN/BCD	BIN/BCD

Mapping Parameter References

æ

Index

Numerics

800 Series I/O Modules I/O Map, 38 984LL notation, 25, 32

Α

addressing examples, 34 flat, 32 modes, 31 topological, 33 ASP890300, 87

В

B802-008 115 Vac Output, 279 B803-008 115 Vac Input, 285 B804-116 115 Vac Output, 291 B804-148 48 Vac Output, 297 B805-016 115 Vac Input, 303 B806-032 115 Vac Output, 309 B806-124 24 Vac Output, 317 B807-132 115 Vac Input, 323 B808-016 230 Vac Output, 331 B809-016 230 Vac Input, 337 B810-008 115 Vac Isolated Output, 343 B814-108 Relay Output, 349 B817-116 115 Vac Isolated Input, 357 B817-216 230 Vac Isolated Input, 357 B818 20-28 Vac Discrete Output, 559 B818 24 Vac Output, 365

B819-232 230 Vac Input, 371 B820-008 10-60 Vdc Output, 377 B821-108 10-60 Vdc Input. 383 B824-016 24 Vdc Output, 389 B825-106 24 Vdc Input, 395 B827-032 24 Vdc Input, 403 B828-016 5 V TTL Output, 409 B829-116 Fast Response 5 V TTL Input. 415 B832-016 24 Vdc Output, 421 B833-016 24 Vdc Input, 427 B836-016 12-250 Vdc Isolated Output, 433 B837-016 24 Vac/Vdc Input, 439 B838-032 24 Vdc Output, 445 B840-108 Relay Output, 451 B842-008 Reed Relay Output, 457 B846-001 Input Multiplexer, 111 B846-002 Input Multiplexer, 111 B849-016 48 V ac/dc Input. 463 B853-016 115 Vac/125 Vdc Input. 469 B855-016 Intrinsically Safe Input, 475 B862-001 Register Output, 485 B863-032 Monitored 24 Vdc Input, 493 B863-132 Vdc Input, 499 B864-001 Register Output, 507 B865-001 Register Input, 515 B868-001 Register Output, 525 B869-002 Register Input, 535 B872-100 Analog Output, 117 B872-200 Analog Output, 135 B873-002 Analog Input, 153 B873-012 Analog Input, 169 B875-002 Analog Input, 153

B875-012 Analog Input, 169 B875-102 High Speed Analog Input, 183 B875-111 Analog Input, 213 B875-200 Configurable A/D Input. 243 B877-111 Analog Input, 213 B881-001 Latched 24 Vdc Input. 545 B881-508 125 Vdc Output, 553 B882-032 24 Vdc Diagnostic Output, 559 B882-116 24 Vdc Output, 571 B882-239 High Speed Counter, 585 B883-001 High Speed Counter, 593 B883-101 CAM Module, 599 B883-111 CAM Module, 599 B883-200 Thermocouple Input, 605 B883-201 RTD Input. 613 B884-002 PID. 621 B885-002 ASCII / BASIC, 629

С

cable shields requirements, 44

F

field connections B33-016 24 Vdc Input, 429 B803-008 115 Vac Input, 287 B804-116 115 Vac Output, 293 B804-148 48 Vac Output, 299 B805-016 115 Vac Input. 305 B806-032 115 Vac Output, 312 B806-124 24 Vac Output, 320 B807-132 115 Vac Input. 326 B808-016 230 Vac Output, 333 B809-016 230 Vac Input. 339 B810-008 115 Vac Output, 345 B814-108 Relay Output, 352 B817-116 115 Vac Isolated Input. 359 B817-216 230 Vac Isolated Input. 359 B818 24 Vdc Output, 367 B820-008 10-60 Vdc Output, 379 B821-108 10-60 Vdc Input. 385 B824-016 24 Vdc Output, 391 B825-016 24 Vdc Input, 397 B827-032 24 Vdc Input, 405 B828-016 5 V TTL Output, 411 B829-116 FR 5 V TTL Input, 417 B832-016 24 Vdc Output, 423 B836-016 12-250 Vdc Output, 435 B837-016 24 Vac/Vd Input, 441 B838-032 24 Vdc Output, 447 B840-108 Relay Output, 454 B842-008 Reed Relay Output, 459 B849-016 48 V ac/dc Input, 466 B853-016 115 Vac/125 Vdc Input, 472 B862-001 Register Output, 488 B863-032 Monitored 24 Vdc Input, 495 B863-132 24 Vdc Input, 502 B864-001 Register Output, 510 B865-001 Register Output, 519 B868-001 Register Output, 528 B869-002 Register Output, 539 B872-100, 122 B872-200 Analog Output, 142 B873-002 Analog Input, 164 B873-012 Analog Input, 178 B875-002 Analog Input, 164 B875-012 Analog Input, 178

B875-111 Analog Input, 220 B875-200 Configurable A/D Input, 250 B881-001 Latched 24 Vdc Input, 549 B881-508 125 Vdc Output, 556 B882-032 24 Vdc Diagnostic Output, 563 B882-116 24 Vdc Output, 573

G

grounding guidelines, 39 requirements, 44

I

I/O line requirements, 44 IEC notation, 25, 32 indicators, 37

J

J890 RIO Interface, 55 J892 RIO Interface, 55

Κ

key pin assignments, 47

L

line filters requirements, 44

Ν

notation 984LL, 25, 32 IEC, 25, 32

Ρ

P890 RIO Processor, 75 P892 RIO Processor, 75 parameter configurations B802-008 115 Vac Output, 283 B803-008 115 Vac Input. 289 B804-116 115 Vac Output, 295 B804-148 48 Vac Output, 301 B805-016 115 Vac Input. 307 B806-032 115 Vac Output, 315 B806-124 24 Vac Output, 322 B807-132 115 Vac Input, 330 B808-016 230 Vac Output, 335 B809-016 230 Vac Input, 341 B810-008 115 Vac Isolated Output, 347 B814-108 Relay Output, 354 B816 Isolated Output, 355 B817-116 115 Vac Isolated Input. 363 B817-216 230 Vac Isolated Input. 363 B818 20-28 Vac Discrete Output, 570 B818 24 Vac Output, 369 B819-232 230 Vac Input. 375 B820-003 10-60 Vdc Output, 381 B821-108 10-60 Vdc Input, 388 B824-016 Vdc Output, 393 B825-016 24 Vdc Input, 399 B826-032 24 Vdc Output, 401 B827-032 24 Vdc Input, 407 B828-016 5 V TTL Output, 413 B829-116 FR 5 V TTL Input, 419 B832-016 24 Vdc Output, 425 B833-016 24 Vdc Input, 431 B836-016 12-250 Vdc Output, 438 B837-016 24 Vac/Vdc Input, 443 B838-032 24 Vdc Output, 449 B840-108 Relay Output, 456 B842-008 Reed Relay Output, 461 B846-001 Input Multiplexers, 116 B846-002 Input Multiplexers, 116 B849-016 48 V ac/dc Input, 468 B853-016 115 Vac/125 Vdc Input, 474 B855-016 Intrinsically Safe Input, 483 B862-001 Register Output, 492 B863-032 Monitored 24 Vdc Input, 497 B863-132 24 Vdc Input, 505 B864-001 Register Output, 514 B865-001 Register Input, 524 B868-001 Register Output, 532 B869-002 Register Input, 542

B872-100 Analog Output, 133 B872-200 Analog Output, 152 B873-002 Analog Input, 167 B873-012 Analog Input, 181 B875-002 Analog Input, 168 B875-012 Analog Input, 182 B875-102 High Speed Analog Input. 212 B875-111 Analog Input, 239 B875-200 Configurable A/D Input. 273 B877-111 Analog Input, 240 B881-001 Latched 24 Vdc Input, 551 B881-508 125 Vdc Output, 558 B882-032 Vdc Diagnostic Output, 569 B882-116 24 Vdc Output, 580 B882-239 High Speed Counter, 591 B883-001 High Speed Counter, 598 B883-101 CAM, 603 B883-111 CAM. 603 B883-200 Thermocouple Input. 610 B883-201 RTD Input, 618 B884-002 PID, 626 B885-002 ASCII/BASIC, 633 power supplies ASP890300, 92, 103, 105 safety message, 92 power supply requirements, 44

Q

quick start tests, 50

S

specifications ASP890300, 104 B802-008 48 Vac Output, 282 B803-008 115 Vac Input, 288 B804-116 48 Vac Output, 294 B804-148 48 Vac Output 300 B805-016 115 Vac Input, 306 B806-032 115 Vac Output, 314 B806-124 24 Vac Output, 321 B807-132 115 Vac Input, 329 B808-016 230 Vac Output, 334 B809-016 230 Vac Input, 340 B810-008 115 Vac Isolated Output, 346 B814-108 Relay Output, 353 B817-116 115 Vac Isolated Input. 362 B817-216 230 Vac Isolated Input. 362 B818 20-28 Vac Output, 568 B818 24 Vdc Output, 368 B819-232 32 Point Input, 374 B820-008 10-60 Vdc Output, 380 B821-108 10-60 Vdc Input, 386 B824-016 24 Vdc Output, 392 B825-016 24 Vdc Input, 398 B827-032 24 Vdc Input, 406 B828-016 5 V TTL Output, 412 B829-116 FR 5 V TTL Input, 418 B832-016 24 Vdc Output, 424 B833-016 24 Vdc Input, 430 B836-016 12-250 Vdc Output, 437 B837-016 24 V ac/dc Input, 442 B838-032 24 Vdc Output, 448 B840-108 Relay Output, 455 B842-008 Reed Relay Output, 460 B846-001 Input Multiplexers, 115 B846-002 Input Multiplexers, 115 B849-016 48 V ac/dc Input. 467 B853-016 115 Vac/125 Vdc Input, 473 B855-016 Intrinsically Safe Input, 482 B862-001 Register Output, 491 B863-032 Monitored 24 Vdc Input, 496 B863-132 24 Vdc Input, 504 B864-001 Register Output, 513 B865-001 Register Input, 522 B868-001 Register Output, 531

B869-002 Register Output, 541 B872-100 Analog Input, 131 B872-200 Analog Output, 151 B873-002 Analog Input, 166 B873-012 Analog Input, 180 B875-002 Analog Input, 166 B875-012 Analog Input, 180 B875-102 High Speed Analog Input, 210 B875-111 Analog Input, 237 B875-200 Configurable A/D Input. 271 B881-001 Latched 24 Vdc Input, 550 B881-508 125 Vdc Output, 557 B882-032 24 Vdc Diagnostic Output, 567 B882-116 24 Vdc Output, 578 B882-239 High Speed Counter, 589 B883-001 High Speed Counter, 597 B883-101 CAM, 602 B883-111 CAM. 602 B883-200 Thermocouple Input, 609 B883-201 RTD Input, 617 B884-002 PID Control, 625 B885-002 ASCII/BASIC, 632 environmental-analog modules, 51 environmental-discrete modules, 52 J890 and J892, 73, 84 mechanical-analog modules, 51 mechanical-discrete modules, 52

Т

technical specifications summary analog modules, 27 discrete modules, 28 RIO modules, 26 special purpose modules, 30

V

values reading, 33